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OVERVIEW

Temperature fluctuations in the atmosphere lead to denity fluctuations. The refractive

index is proportional to the density; tnerefore, there are stochastic variations in the refractive

index that affect the propagation of electromagnetic waves. These fluctuations are evident in

the shimmering of images that we see above heated surfaces. These refractive index

fluc .uations have a profound effect on astronomical images viewed through large apertures and

severely affect the propagation of laser beams propagated through the atmosphere. Turbulence

causes the images seen through astronomical telescopes to be much larger than the diffraction-

limited size and to jitter in position. It also causes the return image amplitude to vary - an

effect referred to as "twinkling" in the popular press and scintillation in the technical literature.

In the propagation of laser beams through the atmosphere, turbulence can cause the beam to

break up and to be much larger than the diffraction size.

Many measurements have been made of the distribution of the turbulence in the atmosphere

versus altitude. It has been found that the turbulence profile varies with geographical location,

time of day, season, weather, and presence of high-altitude winds. Several turbulence models

have been proposed and are used in problems. The common models generally used are the

SLCSAT day and night models and a model that is generally referred to as the Hufnagel-Valley

model. The last model has two free parameters so that the strength of the turbulence can be

varied. That model is the one used most often in this report because of the ability to change

turbulence strengths and because of its convenient analytic properties.

Adaptive-optics systems were devised to overcome turbulence effects on laser-beam

propagation and imaging. In these systems, a bright source is propagated through the

atmosphere, and the distortion of the beam is measured. If the conjugate of measured phase

distortion is applied to a deformable mirror, the image will be corrected and a laser beam

bounced off the mirror will be predistorted so that its phase front will be flat after it traverses

the turbulent atmosphere. An adaptive-optics system does not, however, make a perfect
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correction to completely overcome the effects of turbulence. There are only a finite number of

actuators on the deformable mirror, so that all scales of turbulence are not corrected. There can

be a time delay before the correction is applied, and the turbulence will change in that time.

The beacon source to determine the correction may not be in the same direction as tbe object to

be imaged or the direction one wants to propagate the laser. The turbulence changes in

different directions, and a correction made for a certain direction will not apply along another

ray path. The effects of different turbulence along different paths are called anisoplanatic

effects. The angular difference between two ray paths for which the effect of turbulence is

starting to be significantly different is called the isoplanatic angle.

The thecry in this report was developed to aid the performance predictions and to analyze

the data in the experiments that were and will be performed with a variety of systems. A

variety of quantities of interest such as the Strehl ratio, the beam jitter, the beam profile, the

effect of diffraction, inner and outer scale sizes and system defects will be considered. As

concrete examples of the application of the theory it will be applied to several systems that are

being actively considered by the adaptive-optics community. One experiment uses a 69-

actuator adaptive-optics system with a 0.6-m aperture to propagate a corrected beam to a target

at a range of 600 km. Another system uses an adaptive-optics system that has a deformable

mirror with 241 actuators also with a 60-cm beam director. The corrected beam is directed at a

cooperative target satellite and the space shuttle. The target satellite is considered to be

launched into a 500-km orbit and contains a 4-m square target board with 85 sensors to sample

the amplitude of the corrected beam and a lead-ahead boom whose position can be changed

between passes. The boom supports a comex-cube array reflector for a beacon that will be

used to provide the information to drive the adaptive-optics optics system. The proposed

shutile-based expcriment will be used to measure the energy received in a bucket and the angle

of arrival of a corrected laser beam. In addition, the analysis in this report is used to examine

some of the problems in performing a mirror-relay experiment in which a compensated beam is

bounced off an exoatmospheric mirror to a target. Also analyzed are possible experiments with

larger apertures that are in the meter and several meter size range.
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mirror to a target. Also planned and analyzed is a much larger, several-meter aperture ground

system for an FEL (Free Electron Laser) experiment.

The simplest quaro"'s to calculate are the phase and amplitude variance. The phase

variance can be used to find the wavetront tilt, which is of primary interest for many

applications. Knowing how close the image size or laser-beam intensity on axis is to the

diffraction-limited value is of great interest: this quantity is referred to as the Strehl ratio. If the

distortion is small, the Strehl ratio can be approximated by the extended Mar~chal formula

given by

SR expl- 0 9

where the quantity in the exponential is the phase variance in radians squared. This formula is

only accurate when the phase variance is below a few tenths. Formulas that are valid over a

larger range of phase distortion are developed in this report.

To analyze the performance of astronomical telescopes and adaptive-optics systems, one is

interested in finding the effect of turbulence on the ji:ter, twinkling, Strehl ratio, and beam

profile. These problems are more difficult than finding the phase and amplitude variances. In

order to solve these problems one has to analyze Maxwell's equations with turbulence effects

present, which results in stochastic differential equations. These equations are formidable:

general solutions do not exist. TatarskiI has developed ways to simplify these equations; and

combine them with the Rytov approximation, thus making the problem tractable. The use of

the Rytev approximation makes the solution for the amplitude valid only if the amplitude

fluctuations are not very large. For large amplitude fluctuations, a different, more complicated

theory is needed. Fortunately, for most astronomical problems and most problems associated

wili adaptive-optics systems, the amplitude fluctuations are small, and the simpler theory

applies.

Saying that the solution is tractable does not mean that the solution is easily obtained.

Unfortunately, the analysis to obtain the final form of the answer is usually quite difficult, and
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some ingenuity is involved in each problem. The final answer is also not in a very convenient

form - being a complicated multiple integral. This expression is usually evaluated

numerically, and the answer expressed in terms of graphs for a range of parameter values.

These calculations have to be redone for new turbulence or wind models, zenith angles, and

parameter values. The solutions in some cases have been made more general, as in the papers

of Fried2 and Tyler3 by defining normnalized quantities; the tabular and graphical nature of the

answers, however, make these results difficult to use in systems-analysis codes. For

complicated problems, in which there are several indiependent parameters, even the

representation of the results of these integrations is difficult.

For these reasons, a new approach to solving these problems was developed. In this

report, a powerful method is presented to allow one to evaluate the phase and log-amplitude

variance, power spectral densities, Strehl ratios, and beam profiles for an electromagnetic wave

propagating in a turbulent media.

This method is based on the Rytov approximation. Therefore, it applies to most phiase

problems and can be used to evaluate the scintillation when it is not large. This analysis is not

applicable to nonlinear effects such as those produced by thermal blooming. The effect of

defects of an adaptive-optics system including various types of anisoplanatism can be included.

Anis-)planatism can include displaced apertures, apertures pointing in different directions, or

two beams taking different paths because of a difference in wavelengths, and time delay. The

normal optical aberrations can also be found or subtracted from the results. Results can be

obtained for collimated or focused beams. The effect of point and distributed sources can also

be calculated. These effects can be considered simultaneously in many cases.

The approach is based on simplifying the expressions for phase variance, structure

function, and power spectral density so that they can be written., regardless of the problem, in

the following forms:
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Phase and scintillation variance:

0

Phase and log-amplitude structure function:

0 I=) 0.4146k 2 d9 f( rcP][1 cosL P oDl}ir ( ,:

D a'JJfd: C?1(: )f Ca1- ot~ ,
0 i

Power spectral density:

F(o))= 1.303 C dc U - )
0 "- 0 /C2- 1 Ca i

2
In these expressions, C,(: ) is the strength of turbulence versus propagation distance, f( )

is the transverse turbulence spectrum, v(z) is the wind velocity, c, and Ca are functions

that depend on whether the beam is collimated, focused at the source or at the target, and

FiFi (', Z ) is the product of transverse spatial filters. The turbulence spectrum can contain

inner and outer scale effects. The essential difference between various problems is the choice

of filter functions. In this report, filter functions are derived to extract any Zemike mode such

as piston and tilt, to account for any form of anisoplanatism, and to consider point and

distributed sources for adaptive-optics systems. Using these three formulas, the solution to an

individual problem can be written down very quickly in the form of a triple integral for the

structure function and variance of phase and amplitude related quantities. This is a significant

simplification over previous techniques; however, in addition, it is shown how to perform

these integrations to generally obtain simple expressions that do not contain any integrals. The

integration technique will now be briefly described.

The angle integration in the transverse-spectrum space can usually be easily performed so

that these problems are reduced to the evaluation of a double integral.
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The evaluation of the initegral over the spatial-transform space becomes increasingly

difficult as the number of independent parameters in the integrand increases. For single

parameter problems. the integral over the transverse spatial spectrum or c can be put in the

form
00

H *(s) dy H(y) y s-I

0

"This is the Mellin transform of H1(y); it is simply evaluated by lookup in a Mellin transform

tab!e followed by evaluating the resultant expression for a specific value of s. The number of

Mellin transforms needed to solve turbulence problems is surprisingly small, and the

transforms for all problems considered to date are listed in the report. Fer problems with two

parameters, a more complicated procedure must be used. A convolution theorem is used to

convert the integral into an equivalent one in the complex plane of the form

H ( x)= 1 fds x-S L(s)

where L(s) is the ratio of Gamma functions and the path of integration goes from -i** to +ioo

along a path determined by the specifics of a particular problem. The utility of this form stems

from the property that the only singularities of the integrand are poles of numerator Gamma

functions which occur when their arguments are negative integers. This property allows this

integral to be evaluated very easily using pole-residue integration by closing the path of

integration in the direction determined by the properties of the integrand. The result is a

Taylor-series solution for the value of the integral. For large values of the parameter, this

series may converge slowly, and an asymptotic series is found in those cases. The asymptotic

series is the sum of the residues of the poles on the other side of the path of integration plus a

contribution from the steepest desceat path. This is easily evaluated. It is found that usually

fewer than ten terms, and often one or two terms, give ;n accurate value of the integral, and

there is an overlap of the range of validity of the two series, therefore, allowing one to

represent tb.; solution over the entire parameter range with a few terms.
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For problems containing more than two parameters, it is shown that the integral can be

transformed into one in several complex planes. The technique of pole-residue integration is

generalized in this report so that power series solutions are also obtained in those cases. In the

process of evaluating the integrals the natural parameters of the solution emerge, which allows

one to obtain physical insight into the nature of the interactions of the various parameters.

After performing this integration, the problem has now been reduced to an integration along

the propagation direction. It is shown that for the Hufriagel-Valley model of turbulence this

integral can often be evaluated analytically. Therefore, by using these methods, the solutions

of turbulence problems are usually expressed as the sum of a few terms that do not contain any

integrals. For some problems the last integration must be performed numerically. This is just

a single integration and does not have numerical difficulties associated with it.

These techniques can be augmented to find the Strehl ratio and beam profile. The extended

Huygens-Fresnel approximation can be used to show that the beam profile and Strehl ratio can

be written as

Beam profile:
k°W D - . D(a)1

In( 1 f dt K(a)exp I

Strehl ratio:

SR= f dK(aexp D

where K (a) is the modulation transfer function of a circular aperture. The integration is over

a circular aperture of unit radius. The problems of finding the beam shape and Strehl ratio are

more complicated, since the structure function appears in the exponential of an integral. Simple

solutions cannot be found for all values of Strehl ratio; however, they can be found in the

regime that is of most interest for adaptive-optics problems. It is shown that by using the

techniques that were developed to find the previous quantities plus an expansion in Gegenbauer

polynomials that the expression for the Strehl ratio when it is greater than 0.3 can be written as

in7



SR =exp[CIO] g(E)

where g(E ) is a polynomial expression, o is the phase variance, and E depends on the

particular problem being solved. The same techniques can be used to obtain series solutions

for the beam profile.

The mathematical analysis leading to the results is formidable to many. since it uses

mathematical concepts that are not normally part of the education of an engineer or physicist.

Once the time is spent to master these techniques, however, the application of the m -.thods that

are developed is rather straightforward. Flow diagrams of how to use this approach to solve

problems are given. In fact, the method is so consistent that it should be possible to write a

computer program that completes the solution after the problem is set up utilizing an

algorithmic approach as is used in MACSYMA.

This report is composed of three parts. Many persons are qot interested in the details of the

derivations but are interested in obtaining an answer to a problem of interest. Part I is aimed at

that audience and, also, is a useful summary to others with a deeper interest in the theory. A

summary of the relevant formulas developed in parts 2 and 3 is given in tables. In addition, a

step by step method for solving each type of straightforward problem is provided. More

complicated problems are not covered in these flowcharts, since they require a deeper

understanding of the theory.

In part 2, a general method of performing integrations of the same form as those

encountered in solving turbulence problems is developed. This method is mathematically

intensive and uses the properties of Gamma functions, Mellin transfolms, pole-residue

integration in several complex planes, and asymptotic series. The method of doing integrations

iri several complex planes is not available i the literature.

In part 3, a general method is developed to allow one to quickly set up turbulence

problems. This method is a generalization of Tatarski's method of spectral expansions. Using

this method, one can represent the effect of anisoplanatism, defects in the adaptive-optics



system, and the extraction or subtraction of Zernike modes as filter functions multiplying the

turbulence spectrum. These filter functions can usually be cascaded so that any number of

effects can be considered. Using general formulas, one obtains the expression for the phase or

log-amplitude variance, or power spectral density as a iriple integration over the transverse

spatial spectrum and the axial coordinate.

These integrals can often be evaluated analytically. The integral over angle in spatial

transform space can usually be easily performed. The integral over th,' magnitude of the

transverse spectrum, which can contain many parameters due to the various effects being

considered, is evaluated by the method introduced in part 2. The last integral over the axial

coordinate can typically be evaluated analytically for most problems of interest using the

Hufnagel-Valley model of turbulence.

The evaluation of the Strehl ratio and beam profile is performed by a modification of the

integration method of part 2.

The method of integration developed in part 2 has applikations in any field in which this

type of integral is encountered.

This report evolved over several years and with the help of colleagues. I want to thank Lee

Bradley for suggesting the usefulness of Mellin transforms and Gegenbauer polynomials,

Ronald Parenti for discussions on how to handle distributed sources, John Sheiton for help in

resolving the issue of integration in several complex planes, Robert Kramer for carefully

reading the report and making suggestions on how to modify it tu izake it more readable, and

to Charles Primmerman for offering suggestions on how te orgaiize the material. Finally, a

special note of thanks to Carole Kelly for making numerous revision. and putting this report in

its finial forr,.

This report contains much new material with which the typical reader will not be

acquainted. i have tried to explain this material or indicate references to it. I would appreciate

any conanents the reader has on how to make this report easier to read. My hope is that an
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expanded version of this report containing more tutorial material will be published in a form

that will have a broader audience.
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1. FLOWCHARTS AND SUMMARY TABLES

1.1 INTRODUCTION

Problems concerning the oropagation of electromagnetic waves in turbulent media are

considered to be diffirult for two -,easons: each problem is treated as a separate entity, and
there are several difficult steps in arriving at the final expression for the effect of interest. In
addition, this final expression is in the form of a complicated multiple integral. The evaluation

of this expression poses problems both because of numerical difficulties and also because the

final answer is given in terms of tables or curves for a few parameter values - a form that is

often difficult to extend to new parameter values or zenith angles without repeating the

calculation and is often not very useful for systems-analysis calculations. For these reasons,

calculations in this area are avoided except by a cadre of specialists. It is shown in the three

parts of this report that turbulence problems in which the Rytov approximation (slowly varying

turbulence parameters and low scintillation) is valid can be approached in a systematic fashion,

and answers can be expressed in terms of rapidly converging series of the parameters of the

problem. The forms of the answer can be derived quickly, give physical insight, and may

easily be re-evaluated for new parameter values or zenith angles.

It is shown that many of the problems of interest can be expressed as a spatial filter

function operating on the turbulence spectrum. The rms value is often the quantity desired. To

find this quantity, the expression must be multiplied by its complex conjugate, and then the

expected value must be found. This expression contains at least a six-fold integral. The

reduction of the number of integrals, which consists of making substitutions and

approximations, follows the same procedure from problem to problem.. It is shown that the

problems are reducible to integrals over the transverse spatial spectrum and along the

propagation direction. This triple integration can serve as a starting point for most problems,

obviating the need to perform the previous integrals. The intepration over the angular

coordinates in spatial-spectrum space is usually easy to perform, thus reducing the problem to



evaluating a double integral - one ove- the magnitude of the transverse spatial spectrum, the

other over the propagation direction.

The integral over the magnitude of the turbulence spec.rum can be evaluated by Mellin-

transform tcchniques and results in rapidly converging series. The problem has now been

rmduced to finding various moments of the turbulence strength profile and thel, summing the

series terms. Soruetimes the parameters that determine the path of integration contain the axial

coordinate. Because the parameter changes it. magnitude along the propagation direction, it

may be necessary to change the path of integration at some point along the path. For this

reason, the final answer can contain partial moments of the turbulence that are integrals of the

turbulence strength times some function of the axial coordinate over part of the path. For the

Hufnagel-Valley model of turbulence, the full and partial turbulence moments of the turbulence

strength multiplied by a power of the propagation direction can be evaluated analytically. Two

other turbulence models that are often used called the SLCSAT day and night mo0els can be

represented by an equivalent Hufnagel-Valley model with parameters chosen so that they have

the same values of coherence diameter and anisoplanatic angle. Tlhe net result is that the final

answer can often be expressed as the sum of a few terms that do not contain any integrals.

The evaluation of the structure function and power spectral density are performed in the

same manner. Finding the beam profile and Strehl ratio is more complicated but can be done

for uncorrected turbulence. For adaptive-optics problems in which the Strehl ratio is greater

than 0.3, the beam profile and Strehl ratio can also be found using the same techniques

augmented by the introduction of Gegenbauer polynomials. The evaluation of the Strehl ratio

using this technique is valid over a greater range than the extended Mar6chal formula.

In this part of the report, detailed flowcharts are given to allow one to calculate the phase

and log-amplitude variances, the power spectral density, and Strehl ratio. These flowcharts are

synopsis of the results in parts 2 and 3. More complicated problems are not treated in these

flowcharts: these require the use of techniques developed in parts 2 and 3.

12



1.2 FLOWCHARTS

In this seci ,n, flowcharts are presented that allow one to solve most of the simple

problems of interest in turbulence propagation. This section does not consider the case of

forming new filter functions by combining complex filter functions and thvn taking the absolute

v•alue squared. This technique is discussed in the problems of finding the Zernike minus the

Gradient tilt in Section 3.5.3, beam movement at a target in Section 3.5.5. tracked tii. irl

Section 3.5.6. and scintillation or. a corrected beam in Section 3.5.7. Combininig filter

functions for these problems is basically not difficult. but, it requires an understanding of the

filter functions that is not easy to convey in flowcharts. The evaluation of the integrals

obtained in these problems is covered in the flowcharts.

There are two basic kinds of flowcharts in this section. There are the step by step

flowcharts that allow one to set up a problem. In these flowcharts, there are some boxes with

asterisks. The asterisk indicates that there is another flowchart that goes into detail on how to
accomplish the step in the box. Some of these additional flowcharts are of the second type that

are really not flowcharts but logical ordering of cases that allow one to select a formula to be

used in the solution of the problem. All the formulas that. are necessary to set up problems and

evaluate integrals are contained in Tables A to J at the end of the flowcharts. These formulas

are derived in parts 2 and 3.

The first flowchart, in Figure I-1, describes the general method that is applicable to the

solution of all problems. After the general formula applicable to finding the quantity of interest

is selected, one has to choose the filter functions to insert in the integral. If some Zernike

quantity is wanted, a filter function from Table B is selected. If the source is a point or aMK distributed source rather than a collimated beam, a filter function is selected froin Table E. If

ahisoplanatism effects are wanted, then the proper formulas for the effects under consideration
are selected from Table E. The formulas given do not allow one to combine the anisoplanatic

effects with the distributed sources, and that is why they are on separate paths in the

0



flowcharts. These effects can be combined by going back to the fundamental relations. That is

not done in this report. After the problems are set up in terms of integrals, they are evaluated.

In Figure 1-2, the first box of the previous flowchart is expanded. The procedure for

selecting the correct formulas to find phase or log-amplitude related quantities for the variance,

power spectral density or structure functions for collimated and focused beams is described.

The steps to find the filter function with anisoplanatism with as many effects as desired

included are shown in Figure 1-3. The selection of the correct formulas for Zernike

components and distributed sources is shown in Figures 1-4 and 1-5, respectively. As pointed

out in the section where these relations are derived, subtracting Zernike modes like tilt from the

full structure function is not strictly correct because the Zernike modes are not statistically

independent. The error in subtracting the tilt is less than 10% in calculating the Strehl ratio.

The evaluation of gradient tilt components is considered in Figure 1-6.

At this point, the solution of the problem is written down in terms of a multiple integral.

The general evaluation of this integration is shown in Figure 1-7. For phase and log-amplitude

problems, there is a triple integration over kappa space and over the axial coordinate. For

power spectral density, there is a double integration over c and over the axial coordinate. The

integration over the angle in kappa space can usually be easily done. The performance of the

other integrations is discussed in detail in other flowcharts.

The integration over kappa or c where there are single or no parameters is easy to perform

as shown in Figure 1-8. By a change of variables, the integrand can be put in a form that can

be evaluated by looking up a Mellin transform in the table, and possibly using a transformation

formula, inserting a specific value for the variable, and evaluating the expression using the

Mellin Transform pairs in Table F. For two or more parameters, the Mellin convolution

integral is used to convert the integral into one in the complex plane as shown in Figure 1-9.

Specifically, the steps required to evaluate an integral in a single complex plane are illustrated in

Figure 1-10. The steps in evaluating the asymptotic series are shown in Figure 1-11.

Integration in two complex planes is considered in Figure 1-12. Integrations in more than two

14
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complex planes are a generalization of the last technique and are discussed in Section 2.5 of

part 2.

The last integration over z is considered in Figure 1-13. When the results of the previous

integrations give a power series in - and the Hufnagel-Valley model is used, then the result of

this integration is an analytic expression. For that reason, it is desirable to always consider

turbulence profiles that can be expressed as a Hufnagel-Valley model. In Appendix C,

parameters for the Hufnagel-Valley model are given that result in the same value of coherence

diameter and isoplanatic angle as the SLCSAT day and night models. These pseudo SLCSAT

day and night models are used in this report rather than the original models.

In Figure 1-14 is a flowchart to obtain the Strehl ratio for anisoplanatic effects. Chromatic

anisoplanatism is not considered in these flowcharts, but is considered in the main text.

o15
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GENERAL METHOD TO SOLVE
TURBULENCE PROBLEMS

"CHOOSE P'OPER GENERAL
EQUATIONS FROM TABLE A FOR

QUANTITY OF INTEREST

ECT POINT ORDISTRIBUTED I

SEL RE FROM TABLE Et

SELECT ANISOPLANAFIC

ANISOPLA~liSM? ES FORMLA 8 RMTBED

Figure 1-). Flowchart of the overall method of solving turbulence problems..
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CHOEPROPER GENERAL EQUATION FROM

TABLE A FRQATT FITRS

VARIANCE - FORMULA A.1
TEMPORAL POWER SPECTRAL DENSITY -- A.3

STRUCTURE FUNCTION - A.2

PHASE RELATED QUANTITmES
COLIMATEO SOURCE - UPPER PART OF A.4

(IF WELL WITHIN FRESNEL DISTANCE SET TO UNITY)
FOCUSED AT APERTURE - MIDDLE PART OF A4

FOCUSED AT S - LOWER PART OF AA

LOG-AMPLITUDE RELATED QUANlTITES
COLLIMATED SOURCE FOR PROPAGATION FROM 0 TO L - UPPER PART OF A.5

FOR PROPAGATION FROM L TO 0 - CHANGE L - z TO z IN ABOVE EQUATION
FOCUSED AT APERTURE - MIDDLE PART OF A.

FOCUSED AT S - LOWER PART OF A.

Figure 1-2. Choosing the filter function for variance, temporal power spectrum, and strut iare functions for
collimated and focused beams.
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AISOPLANATISM

<PARALLEL 

YS-----

NoI

Figure~~ FOR3.L FiDrfn2osfo nspaaim
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ZERNIKE COMPONENTS

ANY ZERNIKE COMPONENT PHASE VARIANCE
8.1

!PISTONPHSEVAIANCE B82 PISTON VARIANCE BJ3

TILT PHASE VARIANCE
EACH AXIS B.4 EACH AXIS 8.6

* 2-AXIS 8.7

1 19

PISTON REMOVED ASE VARIANCE 8.8

PISTON AND ILT RE•MOVED PHASE

2-AXIS TILT VARIANCE ON AN ANNULAR m

APERTURE 0.10

Figure 1-4. Filter functions for Zernike components.
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L POINT OR DISTRIBUTED SOURCE

I.
ON-AXIS UNIFORM SOURCE

E.1

ANISOPLANATIC EFFECT
COMPARISON WITH A COLLIMATED

BEAM

•1' OFFSET POINT SOURCE FSIPNTOUC

OFFST PONT SURCE• -kEVERYTHING SYMMETRIC

E.2 E.3

--I
CENTERED POINT SOURCE
EVERYTHING SYMMETRIC

E.4

OFFSET , DISTRIBUTED, H iCENTERED, DISTRIBUTED,
UNIFORM, CIRCULAR SOURCEM UNIFORM, CIRCULAR SOURCE

E.5 E.6

Figure 1-5. Filter functions for point or distributed sources.
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GRADEN T TLT

TILT VARIANCE TILT VARIANCE
EACH AXIS C.1 EACH AXIS C.3

2-AXIS C.2 2--AXIS C.4

TILT VARIANCE ON AN ANNULAR APERT1JRE
C.5

Figure 1-6. Filter functions for gradient tilt.

EVALUATE INTEGRALS

PERFORM ANGLE WITEGRATION IN
KAPPA SPACEI

SEVALUATE KAPPA OR c INTEGRATION*

EVALUATE z INTEGRATION

Figure 1-7. Overall method to evaluate integrals.
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Ii
SEVALUATE KAPPA INTEGRATION

SINGLE OR ZERO PARAMETERS

CHANGE VARIABLE OF WITEGRATION TO GET
STANDARD FUCTO

S LOOK UP MELLIN TRANSFORM

Figure 1-8. Method of evaluating integrals with single or no parameters.
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EVALUATE KAPPA INTEGRATION
TWO OR MORE PARAMETERS

CHANGE VARIABLES OF INTEGRATION AND
REARRANGE TO GET STANDARD FUNCTIONSIi

LOOK UP MEWJN TRANSFORMS.
REMEMBER THAT THE MELLIN TRANSFORM OF THE INVERSE VARIABLE ONLY

REQUIRES A CHANGE IN SIGN OF s.
IF THE FIRST TERM OF THE POWER SERIES IS SUBTRACTED FROM THE

FUNCTION THEN THE PATH OF INTEGRATION IS MOVED OVER ONE POLE.

USE MELUIN CONVOLUJTION INTEGRAL TO OBTAIN
AN INTEGRAL IN ONE OR MORE COMPLEX PLANES

EVALUATE UITERAL
SINLER YES IN ONE COMPLEX

PARAMTERPLANE*< >

INTEGRATE IN SEVERAL COMPLEX
PLANES*

Figure 1-9. Method of evaluating integrals with two or more parameters.
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I
SNO • '•1,,IF DELTA,= 0 CLU,.E RIGHT.

S EVALUATE

RESIDUES

SIAT~u INNT

DELTA 0 No IF, PAAEE c6o LARG GET

"I

< LS AHI EVALUATE[
YESTE IETO RESIDUES

I Figure 1-10. Evaluation of the integral in a single complex plane.
YE
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ASYMPTOTIC SERIES

IF DELTA - 0 CHANGE THE SIGN OF * THE,,
INTEGRALI

EVALUATE W(x) WHICH IS THE SUM OF THE
RESIDUES ON THE OTHER SIDE OF THE PATH OF

INTEGRATION

CONDITION 1 OP TABLE H
SATISFIED ? YES(x)

Alo

I
FCIMUI.AS IN TABLE H

Figure I-]]I. Evaluation of the asy.mptotic series.
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II A- .
EVALUATE 0 TEORAL *1 TWO COMPLEX PLA~NE

MAKE A LIST OF ALL. 2PbOLES

;I SER EACH COMPLEX VARL40LE PERORM NHE

FOLOWImNG STEPS

0 ?IF DELTA v 0 CLOWE RIGHT

< DLA>NO 

,F DELTA -c 0 CL.OW LEf T

DF PANAEWTPA RAMETERSWWOS
m 

~ A N A S VI MPlTO T IC S EIES -

E X O E T D EP E N D O N O N L O N N O F In-C0 C O S

">

ISELET THE 24POLES IT THAT CAUSEENT EVALUATE

PARAMETER TO DECAY FOR LARGE RESIDUES
VALUES OF THE INDEX

Figure 1-12. Evaluation of the integral in two complex planes.
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N-RATION

YES
< POWER SERIES INN >z? NO 0"EORXNOA

-. I.

IIILOWER MOMENTS W

Figure 1-13. Evaluating of the : integration.
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I

U~SE FORMULAS IN TABLE J

USE GENERAL FORMULA J.1 AND J.2

___ _
FOF DISPLACEMENT ANISOPLANATISM USE J.4 AND J.A

FOR ANGULAR ANISOPLANATISM USE J.6 AND J.7
FOR TIME DELAY USE J.9 THROUGH J.1 I

FOR CHROMATIC ANISOPLANATISM SEE SECTION 3.9.3.4

Figure 1-14. Finding the Strehl ratio with anisoplanatism.
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TABLE A

Formulas for the Phase and Scintillation Variance, Structure Function, and PSD

Phase and Scintillation Variance

x21 0.2073 k12od:-C 2 )f di? f (Kc{p jF 1( , )F. (A.1)'X2 of tC

Phase and Log-Amplitude Structure Function

[Dx ( )0 (A.2)

Power Spectral Density

F(Wo)= 1.303ko jdj J --d= f( Jv-( z) LC l.y71i T (A.3)
0 i'(z 0 "/'--

where

cos2[ [ (_2k L)] collimated

i:)5/3 Cos2[ 2kS (S focused at 0 (A.4)i ~CP= (TZ ) o- 2kos A4

S -.z 5/3Csi 2 k2___S for a wave that is
2__o 2  k S1 focused at S

sin2[ 2k ] collimated

Ca= 5/3 sin 2[ I2S (S _ )focused at 0 (A.5)
( L 513 2 k S - 1 for a w ave that is

J 2kZ S focused at S

and f(K') I? 1 '+ 4J ex ' K'2 Ic= 1/3 (A.6)

For finding the PSD let K = 0oc /vz) in Equations (A.4) and (A.5)
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TABLE B

Filter Functions for Zernike Components of the Waveform

F e n m. n Ii')] [2Jn + (iD /2) ]2[ 2cos 2 (m (P)

Fodd'd ,,( ic) + =(n+ I 2 sin 2(mq') Zernike Polynomials
'•-•-Fmo. n( ) J [Il ( m =O

(B.1)

F (k, z ) = KD / - 2 Piston Phase Variance (B.2)

D22J1d9 /2)- 2

F( =, z) (=-- )L / 2'] Piston Variance (B.3)

FX ()?, )] [4J ( AD/ 2)]12[Cos 2 (9)
Fy(9p, z= L MD /2 sin 2 (o) Zernike-Tilt Phase Variance (B.4)

F ?, f 4 J 2(iD /2)12

z) L AD / 2 J Two-axis Phase Variance of Zernike-Tilt (8.5)

F(l, z) k= D) Ld iD/2 Isin 2() Zernike-Tilt Variance (8.6)
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TABLE B (Continued)

Filter Functions for Zemike Components of the Waveform

F(?F, = / 2 Two-Axis Zernike-Tilt Variance (B.7)

F(W z) r [2 J,(cD /2) (38F ( ?, z) = - L 0 / 2 Piston Removed Phase Variance

F(k, /) =2l- ,09 ]D / 2 Piston and Tilt Removed (B.9)

Phase Variance

Two-Axis Zernike-Tilt Variance on an Annular Aperture

16 F ]2[ J2(AD / 2) 3,/2(•AD / 2)1 (3.10)
[Ajz ODi /4)J [JDJ/2 - P /ci /2J

where /I = Di. / D and Di is the inner radius
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TABLE C

Filter Functions for Gradient TIN Components of the Wave-form

x( )I = j 2 (D/2) Icos 2 (@)
K z)f I sin 2(p) Gradient Tilt Phase Variance (C. 1)

F OF, z) = Ji2(AD / 2) Two-Axis Phase Variance of Gradient Tilt (C.2)

F F(lI-, z) 4__ 2 2 Cos 2 (p)

yz) J1(0  sin 2(9,) Gradient Tilt Variance (C.3)

2

F(KF, z) =k 4 D) j12(DI /2) Two-Axis Gradient Tilt Variance (C.4)

Two-Axis Gradient Tilt Variance for an Annular Aperture

S4 1 2 2

F (k,, ) = (I - P32 )][JI(ID / 2) - P J1(cic/D 2)]2 (C-5)

where ,P: Di. / Dand Di is the inner radius
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TABLE D

Filter Functions for Anisoplanatic Effects In an Adaptive-Optics System

Anisoplanatism

F(#F, Z) =2[1 -cos{ •. 1(2)1] General Formula (D.1)

Jd() = d Parallel Displacement (D.2)

d(_-) = 6: - Angular Offset (D.3)

d(:)= '(z )r Time Delay (D.4)

~sin(~ An 0 z
d - sin() A J°0dx a(x)

Cos 0 Chromatic Offset (D.5)

I
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TABLE E

Filter Functions for Point and Distributed Sources

Point and Distributed Sources

F(", z) = 2 K(H
AL On-Axis Uniform Circular Source of Diameter Ds

(E.1)

Anisoplanatic Effects (Reference Is Collimated Beam)

D6 /. 2 n,• f h,'

F(i, JD d[]-J 0 (-)cos('- -) Offset Point Source (E.2)

D 2 : j"(-- Offset Point Source with Symmetry (E.3)

L ~2HI
F ( K-, z) 2OOf e o n o r e ih S m e r E 3

) 2 Centered Point Source with Symmetry (E.4)
2H

Distributed, Circular, Uniform, Offset Source

4J1 (Dx) 2JI(Dsx) Z]2
F(e, z)= I- Dx Dx o b +[2  Dx (E.5)

where x 2H

Distributed, Circular, Uniform, Centered Source with Symmetry
"9 -2

4 Ji(Dx ) 2J,1 (Dsx)
, F(, z)D= I - '--D'X + [2 D (E.6)"$S L $S

i i= •m I ii~l34



TABLE F

Mellin Transforms that Are Useful for Turbulence Problems

exp(-x) -4F[s] Re s>0 (F.1)

sin~1/2 s/-••F_ 2 IRe sl< I
sin (x) -4 2'- V n r[ - s / 2 Re s(F.2)

Cos ( x) -. 2~'- /irn ' /12] O< Re s<1(F31/ - s / 2 (F.3)

sin 2 (x 2) - 7-r[•/2 * ,/] -4< Re s <0sin x 1,/ 2 s 41(F.4)

J,.(x) -+2 -'rIv 2 +I s/ 21  -Re v<Re s<3/2 (F.5)

2_1_F~s/2 +v, ll2-s/21

42(x) -+ vi s / 2, 1- s /2 -2Re v <Re s <I2 -Y v I - s /(F .6 )

1 rs/2 + v+ 1/2, 1-s 2 1

(F.7)

_p F[s, p- s]
" x) --- 0 <Re s<Re p (F.8)

r[ p]

m3
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TABLE F (Continued)

Merlin Transforms that are Useful for Turbulence Problems

(Ix)a-Iu(1-x) -s Rea>0 Res>0

(F.9)

(x a-I 1) Fr[ air[,-1 a-] Re a>O Re(a+ s)<I

(F.1O)

-4 lirn + S IC] -E <Re s< e
E-•O S+0 (F.11)

cos- (x)U(l - x) -q- " 4sl 2+ LI-s/ 2 1 Re s>0 (F12)

U(1- x) -FF s+ 1 Re s>0 (F.13)

[Rs <0 (F.14)

sin 2 v n lo(_,)n +k-1 (2n)!(n- k) [s 4*Re
x 2 2-n 1 k k !(2 n -s/ 4 I-e sl < 21

(F.15)

36



TABLE G

Hufnagel-Valley Moments of Turbulence

Hufnagel-Valley Full Moment

"41 fd:C2():"=sec 11+1 (5.94 x 10 F13 11)

0
+ 4.05 x 10- 13F(n + 1)(1500)"+ A x 100n+lFr(n + 1)

(G.1)

Hufnagel-Valley Upper Moment

0L 2 0 n I
4~(L) = _dC~ zz =sec"+( 5.94 x 1+2 10

L
+4.05 x 10 13r-( + Hi. (1500)+ Ax r (a,+ n ,+-1)]

(G.2)

Hufnagel-Valley Lower Moment
210-C20+3 Hn 1 i•

/rn(L f " dC n( Z)=sec n+1(i{5.94 x 10 r27 10)2
0

+ 4.05 x 10- 13 y n + 1, H- )(1500)n + A x 100on+I n + l'-'

(G.3)
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TABLE H

Formulas to Find the Asymptotic Series

Integral to be Evaluated

A B

flr[a, + Oa s] lIr[b - Pi s]

H (x) ~ 0 ds x-sT_ i=' i-
2 C D (H.1)

l'Ir[ k + y,. lslr[ d,- 8m- ]
k =1 r=l

Definitions
A D B C

=i + Y . 3 1,- I .Pj -k (H .2)

"i=! j=I k 1

17 = -In I x - A' (H.3)

'=A + D- B- C (H.4)

A.= A+ B- C-D (H.5)
A B C D

v +(H.6)

O= v+ C - A - ='/ 2+ 1 (H.7)

A D B CA= In (ailnd i+ 3. i•mn (3m, - i. Oln( j,- I_ y,.ln (tk, (H.8)

i=1 m=l j=l k=I

B

j_= ,(H.9)

D
D'= X 6m (H.IO)

A= [ D'(- B' (H.11)
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TABLE H (Continued)

Formulas to Find the Asymptotic Series

5
B-= Y, b. (H.12)

j=1

D
D" = dm (H.13)

rn= |

p= [v+ (I - E=)/2] / A (H.14)

A B C D

X= X aj In t. + • ib In I- C " Iln k -Y d. in 6m (H.15)
= ji k=I M=1

A B C D

A4"'= I In a + I In - In y,- yinm (H.16)
ifl j=l kfI m=1

x 2(2 ()2

"x x exp {-pA'- Ax 1 / 4 exp [-A'/ A]cos[irA / A] + A"- A'"/ 2

"x cos xI / exp [-A'/ A]sin [irA/ A]+ [- pA+ B"- D"- (B - D) /2]

(H.17)

A'= A'= A"'- O, B = B', D= D', (H.18)

then the above simplifies to
(*-1)/2

2(2 x) -
E(x)= - -- x exp{-IAx' cos[XrA/ A])

xcos{Ax 1 /Asin[fA/ A]+ x[(l/2- p)A+ B"- D"]) (H.19)

Condition 1: For - > 0, B'_ 1, then H(x)= WVx) (H.20)
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TABLE I

Mellin Transforms, Convolution Integrals, and Transfornmation Formulas

The Mellin Transform Pair is Given by

H(.0)-+ H *(s) M( HI(x)) = Idx H(x). s-i (1.1)
0

and H(x)= Jds H*(s)xs (1.2)

Transformation Formulas
H(ax) a>O a-dSH*(s) (1.3)

x--WH *(s+ a) (1.4)

H (x P) -- H *(s / p) / I pl p * O (1.5)

The Mellin Convolution Integral is Given by

-H s)=Ho(s)H(s)11.6)
0

For More than One Parameter, the Convolution Theorem is
00 N (N

H(x ...x ' ( xj ) -- o H:(s, +... n H )

The Inverse Transform is

H(XIl."'XN)= (2 I)N "d1" dsN H*(Si+...SN)X Xi...xNN (1.8)
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TABLE J
Formulas to Find Stimhl Ratio with Anlsoplarotlem

SR " exp[-1][1 +0.9-36 E + 0. 5133E 2 + 0. 2009 E3 + 0. 0697 E4 +0.02744 E]

(J.1)
2.91k S 2

D - •-[(J.2)

002. 1)= 0 n) 2'91kod5/3 (J.3)

Displacement Anisoplanatism

d,= p~d2  (J.4)
"5/3

O',=2.91kp2,d =6.88 (J.5)

Angular Anisoplanatism
d(:) = e: (J.6)
d2 = ,u2 e (J.7)

L 5/3
_=2. 91ke 0/n3  / (J.8)

0

Time Delay
Ld: =fId:C C2(z ) 1, 2( :) 2 = "1. T,.

2 PiF 2.. (J.
0

L
°',=2.91k~of dzC2( )n 53.")•/=t/t)' (J.lO0)

0
where the velocity moment is defined as

L
"f dz C2 (z )I. R(z )(J. 11)

0

The characteristic time is defined by
LV-o5/3 = 2.91k2 fdz C2(z )v 5 / 3(z) (J.12)

0
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2. THE EVALUATION OF MULTIPARAMETER INTEGRALS

2.1 INTRODUCTION

In M.richev's book4 a powerful method for evaluating integrals is developed. His method

applies to all integrals whose integrand is the product of two generalized hypergeometric

functions. For that case, he shows that the integral, which can be transformed into a Mellin-

Barnes integral, can be expressed as a finite sum of generalized hypergeometric functions

which are equivalent to a Meijer's G-function. He briefly considers the case in which the

integrand is the product of more than two functions and states that this area has not been

developed. In this part of the report, his method is generalized to apply to the case in which the

integrand is the product of N functions, and the final answer is expressed in terms of rapidly

converging series - a form that is more useful for numerical evaluation on a personal

computer.

The evaluation of an integral with N parameters is shown to be equivalent to the integration

of a function composed of the ratio of Gamma functions in N - I complex planes. Methods of

evaluating integrals with general functions in N complex planes are not available, but, because

the complex variables appear only as sums, the integrals encountered using this method can be

evaluated.

Marichev puts h itegrals into a standard form in which the complex variables have unity

coefficients, in which case, Slater's theorem applies, and the answer is a sum of generalized

hypergeometric functions. Using this technique, one can show that the Strehi ratio for

uncorrected turbulence can be written as the sum of six generalized hypergeometric functions,

five of the form 5F1 0() and one 6FII (). This form is not convenient for either obtaining

physical insight or in evaluating the expressions on a personal computer. Here, the step of
putting the integrand into the standard form is short circuited, since the answer will be obtained
in the more convenient form of infinite series. For small values of the parameter, a power

series is obtained, and for large values an asymptotic series is sometimes applicable. Each of
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these series are obtained in a straightforward manner, and the method is amenable to

algorithmic solutions.

The properties of Mellin transforms and Gamma functions that are useful in this analysis

are given here. A short table of Mellin transforms used in the examples given from turbulence

theory is included. Examples of evaluating integrals with one, two, and three parameters to

obtain power and asymptotic series are given. Examples of the multiple pole case are also

treated.

This technique is particularly well suited to evaluating the integrals obtained in considering

wave propagation in turbulence since the kernel of the Mellin transform matches the

Kolmogorov spectrum. The method is also applicable to any field in which this type of integral

is encountered.

2.2 GAMMA FUNCTIONS

The integrals will be shown to be expressible as the ratio of Gamma functions; in order to

perform the integration, several properties of Gamma functions are necessary. The relevant

properties are reviewed in this section.

The definition of the Gamma function is

F(s) Jdxexp(-x)x'- ! () +Jdxexp(-x)x- ( 1
0 n=O 1

The argument s can be complex. The last integral on the right is an entire function and it is

easy to see that the only singularities of the Gamma function are simple poles at the negative

integers, -n, with residue (-I)nln!. The reciprocal of the Gamma function can be shown to

be an entire function; therefore, the only singularities of the ratio of Gamma functions come

from the numerator. Plots of the Gamma function and its reciprocal are shown in Figure 2-1.

For convenience the following notation introduced by Marichev is used
R .. Fa, i)r(a 2) ... ['(a.)

.( J P)r( P2) ... r( pn)" (2.2.2)
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rnFigure 2-1. Plot of the Gammafunction and its reciprocal.

From the duplication formula for Gamma functions, one finds
1I sin (rs)

F(si) F(l - s). (2.2.3)

Using integration by parts on the definition, one can show that

F( s + 1)= sR(s ). (2.2.4)

For integer arguments, one finds F(N + 1) = N !. Some calculators can evaluate the

factorial function at noninteger values. The above relation can be used on those calculators to

evaluate the Gamma function.

Gamma functions with integer multipliers of s can be converted into Gamma functions

with unity coefficients of s by the Gauss-Legendre multiplication formula
r(ms) =mms-/2(2)(0 - ms)/2 m- I

s= s + k / m). (2.2.5)
k =0

For large values of the argument, Stirling's formula gives the asymptotic series as

R( s) = 2;r? sss-l/ 2 exp(-s)[l+ s/12+ s2 /288 +... Iarg sl< r. (2.2.6)

There is a branch cut along the negative real axis.
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2.3 MELLIN TRANSFORMS AND SIMPLE INVERSE TRANSFORMS

Mellin transforms are particularly useful in problems dealing with wave propagation in

turbulence. For simple problems in which the Kolmogorov spectrum is used, the kernel of the

Mellin transform matches the turbulence spectrum, and the integrals can be evaluated by table

lookup. For more complex problems, a convolution theorem is used to transform the integral

into one in the complex plane. Because the Mellin transform of a function is the ratio of

Gamma functions, this integration can be performed using the method of pole residue

integration. If the path can be changed into a closed curve, the value of the integral as given by

Cauchy's formula is just 2iri times the sum of the residues at the enclosed poles.

2.3.1 Mellin Transforms

The Mellin transform pair is given by

H(x)--+ H *(s) M(H(x)) E •fdx H(x)x s-1, (2.3.1)
0

H (x) 1f ds H *(s )x-s.
and H( x) YU- J (2.3.2)

The path of integration in the inverse transform is determined by the convergence p.:operties of

the function being transformed. The Mellin transform of any function that can be expressed as

a generalized hypergeometric function, a category that includes most of the common functions

(algebraic, exponential, trigonometric, inverse trigonometric, hyperbolic, logarithmic, complete

elliptic and sine and cosine integrals, error functions, Gegenbauer polynomials, Bessel and

other orthogonal functions), is given a3 the ratio of Gamma functions. Marichev lists 1200

Mellin transforms. Oberhettinger 5 has an extensive list of Mellin transforms, but, they are not

all expressed in the form of the ratio of Gamma functions as those in Marichev are. In Table F

of part I are Mellin transforms of functions that are useful for problems dealing with wave

propagation in turbulence. The values of s on the real axis for which the integral converges

are also given in the table. The specification of the region of convergence is used when
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choosing the path of integration in doing the inverse Mellin transform. The two-unit step

functions in Equation (F.9) and (F. 10) can be used to convert integrals with finite limits into

ones with infinite limits that can be evaluated using the theory to be presented. The asterisk

after one term in the Mellin transform of the sine squared is a notation that is adopted in this

report to signify that the path cf integration passes between the first and second poles of that

Gamma function. In most cases, this notation is all that is necessary to define the path of

integration in complicated problems in which there are an infinite number of poles on both

sides of the path of integration. For simpler Mellin transforms, such as that of the Bessel

function, the conditions for convergence must be stated explicitly. Table F can be augmented

by using the following properties of Mellin transforms:
M~ax ) a> 0 --->a-3 H*( s), (2.3.3)

XaH(x) --- H *(s+ a), (2.3.4)

H(xP) -- H *( s/ p) / Ipl P *O. (2.3.5)

From these relations, one can easily extend the Mellin transforms in the tables to new

functions. For instance, the Mellin transform of a Gaussian function can be found from that of

the exponential given in Equation (F. 1) by using Equations (2.3.5) and (2.3.3) as

exp (-.x ) --->(s ) .*. exp (_ [x / a] 2)--+O0.5a s (s / 2) . (2.3.6)

There is a parallel to the Fourier convolution integral, that is the Mellin convolution integral

given by
0o

H(x)= J dt H 0 (t )Hjl[ 4H *(s) = H*( s)H*( S) - (2.3.7)
0

Notice the difference between this integral and the Fourier convolution integral. There is the

term lit, and the argument of the second function is the reciprocal of the variable. Obtaining

the Mellin transform of a function in which the variable is the reciprocal of the usual variable as

required above is trivially obtained by replacing s by -s in the function's Mellin transform by
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the use of Equation (2.3.5). The parameter in the problem is x. Notice that there are two

functions and only one parameter. Each of the two functions could have had a separate

parameter; however, a change of variables is used to eliminate one parameter from the integral.

The second parameter only appears as a multiplication constant of the integral.

This relation can be generalized to obtain the Mellin transform of the product of N + 1

functions as
00 N X~ N

H( XI ... X ) Ho,(Ht) "HH j Ho($ 1 +""... SN H (j

0 j=l 0=

= H *(s 1  SN

(2.3.8)

In this form, the complex variables either appear alone or all summed together. The inverse

transform is

H( X,"" N N f...fN... (SI+....SN)X N N (2.3.9)
(2mi)

where the path of integration is determined by the conditions placed on the complex variables

and the N parameters to obtain convergence of the Mellin transforms of the original functions.

In the single parameter case, to evakuate the integral in the complex plane, it will be shown

that the path of integration can be closed at infinity in a clockwise or counterclockwise direction

depending on the integrand. The value of the integral is the sum of the residues at the enclosed

poles.

For many problems, one has to obtain the Mellin transform of a function minus the first

term of its power series. It is easy to show that the Mellin transform is that of the original

function, except the path of integration has moved over one pole. To illustrate this, consider

the transform given in Equations (F.5) and (F.1 1) as

M 2 s+l e + O l] 0<Re s< e.

(2.3.10)
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The path of integration and pole location are shown in Figure 2-2. The poles go to infinity in

the left-half plane. The pole locations are slightly displaced from their true positions on the real

axis for clarity.

Im s
PATH OF
INTEGRATION

POLES AT s = -2N

-8 -6 -4 -2 0

x x X X XX X Re s

-E

Figure 2-2. Pole location and path of integration for integral.

In the limit, the two poles at s = 0 and s = --e cancel. The result is that the path of integration

can now cross the real axis anywhere between the pole at s = 0 and at s = -2 without

changing the value of the integral. Therefore, the Mellin transform is equal to

M ( Jo(x)-1) = 2S -[s12* -2<Re s<0. (2.3.11)

where the notation of using an asterisk to signify that the path of integration passes between the

first and second poles was used again. In this case, the conditions on Re s are redundant The

movement of the path of integration past a pole is what is meant by the analytic continuation of

the integral. It is obvious how to extend this result to that in which the first m terms of the

power series are subtracted from the function. In that case, the path of integration moves past

m poles of the original function.

2.3.2 Evaluation of the Integral with a Single Or One Parameter

If there is only a single parameter in the integral, a change of variables can be made to bring

the parameter outside the integral. The integrard then does not contain any parameters and it

can be evaluated by table lookup.
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Many interesting turbulence problems fall into this category. After the angular integration,

the integral in Kc-space is evaluated by putting the integrand into a form that is evaluated by table

lookup of the appropriate Mellin transform. This technique is used on all the single parameter

problems of Section 3.5.

To illustrate this technique, consider the integral of a power of the radial coordinate times

the modulation transfer function for a circular aperture. This integral is needed in the

evaluation of many turbulence problems. This integral is given by
I I -s1l 2 1 . (2.3.12)

S( S)=fJdc as +'K (a) fa da a 7 o - al a
0 0

By using the unit step function, this can be put in the form of a Mellin transform

I(s)=-da fZa(s+)-Cos-( a) -a (s+ 3 )-I_ U(I - a)].
0

(2.3.13)

The Mellin transforms for the first function is given in Equation (F. 12) with s replaced by

s + 2. This changes the condition for convergence to Re s > -2. The Mellin transform of the

second integral is in Equation (F.9) with s replaced by s + 3 and the use of Equation (2.3.5).

The condition for convergence of that expression becomes Re s > -3. For convergence of the

entire integral, the more restrictive condition on the first function must be used. Since

F(1 / 2) N/ the integral is equal to

I(s)=- {F 12+',s 1]- _F 2 Re s>-2. (2.3.14)1'r s2+2,-s /2 /12+3

Using the property of the Gamma function given in Equation (2.2.4), this reduces to

( s) = -2 Re s > -2. (2.3.15)

SThe single pole due to the denominator term can be expressed as the ratio of two Gamma
functions; this will be done in the section. on Strehl ratios.
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2.4 INTEGRAL EVALUATION WITH TWO PARAMETERS

A power series is defined to be the Taylor series expansion of the function. Later, series

solutions that are not Taylor series but asymptotic series will be considered. Methods of

determining the value of the integral in terms of the series that converges most rapidly are

developed in this section when the integrand contains two parameters. This generalization

from the one parameter case allows one to evaluate more compliceted problems. These

problems can not be evaluated simply by table lookup. The integral is transformed into one in

the complex plane and the methods of integrating in the complex plane are employed to evaluate

it. The methods of doing this are developed in this section. A change of variables is made to

factor out one parameter so that the remaining integral has only one parameter, x.

2.4.1 Power Series Solutions

To convert the integral into one in the complex plane, the Mellin convolution theorem is

used. The resultant integral to be evaluated has an integrand that is the ratio of Gamma

functions. The general form of the integral in the complex plane is a Mellin-Barnes integral

given by
A B

frt[ a, + ai s] Hqr[bj - Pj s]

H(x) WdsXS 2 = D (2.4.1)

flr[ck + YkS] 'lr[dm 8mS]
k=1

The pole location and path of integration for a typical intetal are shown in Figure 2-3. The

path of integration can have all the poles of the Gamma function on one side of the path of

integration or can split the poles of a Gamma function. In all the turbulence problems

considered so far, the path of integration had all the poles or all the poles but the first on one

side of the path of integration. The methods developed here are not sensitive to the pole

locations.
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x X X X X X X TYPICAL POLES OF B TERMS

X X X X X X X

Figure 2-3. Typical path of integration and pole location for integral being considered.

The general solution to this integral can be expressed in terms of Fox's H function. If the

coefficients of s are rational, then the solution can be expressed in terms of Meiji.r's G

function. These facts are mentioned to allow the reader to look up properties of these functions

if desired. We will develop all the properties of the solution that are necessary to evaluate the

integral in terms of rapidly converging series, and knowledge of the properties of these

functions is not necessary.

In this section, it is assumed that the poles are simple. No problems encountered so far in

analyzing propagation in turbulent media have had multiple poles. Multiple poles can be treated

as the limit of poles coalescing, and the results for the regular and asymptotic series are valid in

this limit. The details of doing this are carried out in Appendix A.

Marichev considered the conditions on closing the path along the infinite semicircle for the

case in which the coefficients of s were unity. He put them in that form in order to arrive at

answers that could be expressed as the sum of generalized hypergeometric functions. One can

obtain unity coefficients for the case in which all the coefficients of s are rational by making

the substitution s = ay, where a is the least common denominator of the coefficients. This

substitution makes all the coefficients of y integers, and, by using the Gauss-Legendre

multiplication formula given in Equation (2.2.5), unity coefficient of y are obtained. The
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number of Gamma functions is equal to the sum of the coefficients of y. Using that

procedure, one arrives at final answers that are the sum of high order generalized

hypergeometric functions. This form is not only lengthy to write down, but also, it provides

little physical insight. Here, a different procedure will be used. The coefficients of s will be

left as they are, and the final answer will be obtained as a rapidly converging series of the

parameters. This method works even if the coefficients are irrational. Separate power series

are obtained for large and small parameter values, while under certain conditions for large

parameter values, an asymptotic series will be ootained.

Pole-residue integration is the method that is used to evaluate the integral. To apply this

method, the path of integration must be closed in the complex plane and the value of the

integral is the sum of the residues at the enclosed poles. The form of the answer that results is

a series in terms of powers of the parameter. The answer can be expressed as

H(x)= x-SnG(s.) , (2.4.2)

where G ( sn) is the value of the residue at the pole occurring at sn. The summation is over

all the poles enclosed in the path of integration.

In order to close the path on the infinite semicircle without affecting the value of the

integral, the integrand must decrease faster than 1Is for large values of s. The conditions for

convergevce along the semicircle in the left-half plane will now be obtained. Make the

following definitions

' A+ D- B - C. (2.4.3)

,=A+ B- C-D. (2.4.4)I.A D B C
A= a,- + 1 6. - P X 1 (2.4.5)

I M= I j-I k=I

A D B C

A,= a. In (a.)+ Y, 8mIn (45m) - fi In(fj) - I 4k In (Yd~ (2.4.6)
M1 j1 k =
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A B C D
V= a• a+ • b.- I C k I d,. (2.4.7)

I j= k=I m=l

A B C DA'= Y i;B'=- I j C'-- I 7j.and D"-- 3m.r

i= I j1= 1 k-" 1 m= i

(2.4.8)-(2.4.1 1)

To determine whether the path of integration can be closed in the left-half plane, the

asymptotic behavior of the integrand must be examined in that region. Stirling's formula is not

valid when the argument of the Gamma function goes to negative infinity on the real axis. To

obtain a valid expression, the duplication formula given in Equation (2.2.3) can be used to

eliminate the Gamma functions with positive coefficients for s and put the integrand into the

following form
B C

flr~b Pis~inlrp -ck YkIs sin[I(ck + ys)y]

= :-S'AC JI k=I
D A

1'Ir[d,- 6,s]fl'[Ir[ ai - ais] sin[(ai + at.s )r]
m=1 i =1

(2.4.12)

The parameter x is real; however, in the development that follows, this will be generalized to

allow complex values, and x is replaced by z. All the other constants are assumed to be real

and non-negative. Only the behavior with respect to s is of interest in determining

convergence. The symbol 0 will be used to denote the order of magnitude of the quantity. To

examine the behavior at negative infinity, the following two relations are necessary

liri sin[(a + as)ir]= O[exp{c 'rIm(s)}1, (2.4.13)
S -- 0

and limrF(s) =O[exp( s - / 2)ln (s) - s). (2.4.14)
S -40
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Using these relations in the integrand and using the previous definitions after the terms are

rearranged, the integrand can be shown to be of the order of

I = O[exp I - Re(s )lnI -I + Imr( s)arg(: )

+ [Im(s )arg(-s ) + Re( s)] AInI sl + Re(s )[ A- A']
+InIsA[v-..Z'/2+C-A]+IIm(s)I[- arg(-s)+ ir(C'-A')]}]. (2.4.15)

There is a hierarchy of terms that determine the convergence properties at infinity. The terms in

decreasing order of importance are Re(s) lnhls, Re(s), and Inisi.

The dominant term in determining convergence on the real axis is the one with

ARe(s)lnlsl. If A > 0, the integral can be closed in the left-half plane. A similar analysis can

be performed to see when the integral can be closed in the right-half plane. Doing that analysis

results in the requirement that A < 0. For both these cases, a single power series is obtained,

and it converges quickly for small values of the parameter. For large values, the series

converges slowly, and there can be numerical diffirulties in calculating the sum that contains

terms with large values that alternate in sign. In this parameter regime, an asymptotic series is

appropriate, and the method to derive this series is discussed in the next subsection.

If A = 0, the term with Re(s)[-inl : I -A'] is the most important. Let

1I=-In I :1- A' (2.4.16)

For 1 < 0, the path can be closed in the right-half plane. For l > 0, the path can be closed in

the left-half plane. Typically, if A = 0 then also A' = 0, and in that case, for IzI > 1, the path

can be closed in the right-half plane, while for IzI < 1, the path can be closed in the left-half

plane. Here, separate power series for large and small values of z are obtained and both

converge rapidly.

IfA = 0 and z = 1, the integrand behaves as

1= O s(V+C-A--='/2) (2.4.17)

For convergence on the infinite semicircle, the integrand has to decrease faster than s-1 and

this gives the condition

12= v+ C - A- .V'/ 2+ 1<0. (2.4.18)
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If this condition is satisfied, the path of integration can be closed in either direction. If this

condition is not satisfied then the path cannot be closed at infinity and pole-residue integration

cannot t.- used.

2.4,2 Asymptotic Series

For large values of the parameter, when A * 0, an asymptotic series is appropriate.

Asymptotic series can be found for complex values of :; however, these are more complicated

than those for real values of: that are represented by x. Since real values only occur in all the

problems that have been encountered in turbulence, that is the only case that is considered here.

The asymptotic series is found by moving the path of integration into the right-half plane. By

Cauchy's residue theorem, the value of the original integral is equal to the integration along the

new path plus the residue at any poles that were crossed in moving the path of integration into

the right-half plane. The integral along the new path of integration is found by the method of

steepest descent. In this method, the path is deformed from the original path to a path through

a saddle point and in the direction that decreases most rapidly away from the saddle point.

Along this new path, the value of the integrand is a maximum at the saddle point and decreases

very rapidly away from it. Therefore, the value of the integrand is just due to a small section

about the saddle point that can be evaluated with a power series approximation for the integrand

about that point. To review this method, which is described in detail in many places 6 consider

the following integral

I Jds g(s)exp[f(s)]. (2.4.19)

Express

f"(s0 ) 2

f(s) =f(s0 )+ f'(so)(s- s0)+ 2 (s- so) +.... (2.4.20)

It is assumed that there is a parameter that is very large so that only these terms are necessary to

express the value of the integral with sufficient accuracy. In the problem discussed here it will
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be seen that the parameter that causes the power series to converge slowly serves the function

of the large parameter. At a saddle point, the value of the first derivative is zero. This gives

equations to determine the real and imaginary pans of s at the saddle point. The integral

along this path is that of a Gaussian function with infinite limits that is easily evaluated to give
--joe 0 f#( st) 2]_2

I f Jds g (s 0)exp [f ( s,,) + -2 (S - so)J g (s O)exp [f( so)] .

(2.4.2 1)

This is the first term of the asymptotic expansion. Additional terms can be found if desired.

For typical problems, the first term of the asymptotic series is sufficient, since it is generally

found that contributions due to the poles that are crossed in moving the path of integration to

the saddle po-nt have a much larger contribution.

The asymptotic value of the integral has contributions due to poles to the right of the path of

integration plus the steepest descent contribution. Under certain conditions, one of these two

terms dominates the result and the other can be neglected. If there are no poles to the right of

the path of integration, the steepest descent contribution must always be included. The

contribution at poles decays algebraically (power of x). We will find that the •:havior of the

steepest descent contribution can vary sinusoidally, can have exponential decay or exponential

increase with x. For the sinusoidal variation, both the pole contributions and the steepest

descent contribution are important, and both must be retained. When the steepest descent

contribution decays exponentially, it can be neglected if there are any pole contributions. If the

steepest descent contribution increases exponentially, the pole contributions are negligible.

Conditions on the coefficients that result in these various cases will be considered.

To find the asymptotic value of the integral that is being considered, make the following

additional definitions
A= [ 0 - B'].(24.2

Wklm-2.4.l27
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B

B"= X b. (2.4.23)

D
D"= d, (2.4.24)

p= [v+ (1- .) / 21/ A, (2.4.25)

A B C D
A"= I a. In a.+ b biIn I*- C ckln yk- , d m In 3m

i I1' k=I m=l

(2.4.26)

A B C D

A= ,In ai i j - 7, In y, - In 8m. (2.4.27)
i=! j = k=I m=-

The case A > 0 is considered in this section. In that case, the path of integration can be

closed in the left-half plane. If A < 0, the substitution s-+ -s can be made in the integrand

which changes signs so that now A > 0, and the results that are derived below will apply.

For the asymptotic series, the behavior of the integrand in the right-half plane must be

examined. As a simple case, the asymptotic series for B = D = 0 in Equation (2.4.1) with

simple poles will be derived first. For this case, there is no branch cut in the right-half plane

and the evaluation of the asymptotic series is straightforward. The behavior of the integrand

for large s must be found. Unlike the order of magnitude calculation previously made to

determine whether the integral converges on an infinite circle, a more exact value of the

functions is required. The asymptotic expansion of a Gamma function is
r ari + a s]= -/2-x exp[( a. + a is -I/ 2)in( a, + a is)- a, - ao s].

(2.4.28)

The following expansion is used

S+ a s) I ( a ,s[I+ a(a ,) +(2.4.29)
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If this is inserted into the Equation (2.4.12) and a similar expansion is performed for the other

Gamma functions in the integrand, one obtains

SI~~ (2nr .. /2

2 Yi f ds
xexp[ A'- A.'/2 + s[A'- A- ln(x)] + In (s )(v - 2) + Asln (s )]. (2.4.30)

If the exponent is designated by fis), the requirement of having the derivative of the exponent

equal to 0 to find the saddle point yields

df (s ) -v -/
ds -•( 0 A-O[A'-A-In((x)]+ + s + A[I+ln(s)]. (2.4.31)

Since s is large, the solution can be approximated by

In( So) A-In(x)-
n [ -(2.4.32)

and so =x / 'A exp [- AV! 4. (2.4.33)

The value of so is large since x is large which agrees with the assumption that the path of

integration was moved far into the right-half plane.

The second derivative is

2
df(s) v E / 2 + A A

ds 2  2- s +y -s" (2.4.34)

Each higher order derivative has an increasingly higher value of power of s in the

denominator. Therefore, the higher order derivatives are small compared to the second, and

the assumption that the function can be expressed as a constant term plus a quadratic term is

valid. If these values are substituted into Equation (2.4.21), one obtains for the asymptotic

series

12 . (E -1)/2

l(x)= X exp[- Axi/exp(-A'/ 4) + A"- A"' /2-p]. (2.4.35)

For most problems encountered A'= A"= A'.= 0, then the expression used by Marichev is

obtained which is

I(X)= x p exp [- Ax / A]. (2.4.36)
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This solution has an exponential decay.

The more general case with B and D not equal to zero in Equation (2.4.1) will now be

considered. Since the arguments of the Gamma function are negative for the Gamma functions

with B and D there is a branch cut along the positive real axis for these functions. The path

of integration is now split into 2 parts, one along the upper half plane and one along the lower

half plane. Since x is real, because of the symmetry of the integrand, the value of the integral

is twice the real part of the upper integration. In the upper half plane, tbe negative of the

function is obtained by rotating 180 degrees in the positive angular direction, so that
-s = I sl exp ( ir). (2.4.37)

For large s, the Gamma function with negative argument can be written as

r(b- Ps) = Nv/2 rexp[(b -s- 1/2)iar +(b- fPs-I/2)in(fP)
+ fPs + In l sl(b - I -1 / 2) ]. (2.4.38)

Insert this expression and similar ones for the other Gamma functions with negative arguments

and the expressions in Equations (2.4.28) and (2.4.29) for those with positive arguments into

the integrand. Combine terms using the definitions.given above, one finds that the value of the

integral is

I=2Re (2 ;0)= /2 i 00

2r fdsexp s[-A+ A'-in(x)]+ Jsln(s)+ln(s)[v- /2]
0

+ A"- A.'/ 2 + iyr[B "- D"+ (D - B) / 2 + s( D'- B')]}.

(2.4.39)

To find the saddle point, again set the derivative of the exponent equal to 0. Neglecting terms

that are small because s is large, one obtains for the position of the saddle point the value

In(so) = [In (x) - A'- izA] 4 (2.4.40)

and So= x! / A exp -AV 4]exp[-irA/ 4]. (2.4.41)

The value of the second derivative is the same as that given in Equation (2.4.34). If these

expressions are inserted into the expression for the value of the steepest descent integral given
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in Equation (2.4.21), there are terms that cancel and others that can be combined using the

above definitions. If the steepest descent contribution is designated by E(x) for this more

general case to conform to Marichev's notation, one obtains
E~x= 22 r)('--1)/2

Ex)= 2Re exp[ p[Iln (x) - A'- inrA]

A- Ax/exp [ -A'/ A]exp[-irA/ A] + A4"- A..."/ 2 + igr[B" D" +(B - D)/ 2.

(2.4.42)

Using the fact that for real a and b one has

Re exp [a + ib] =exp (a)cos(b), (2.4.43)

one obtains

2(2 r)(E - 1)/2

"x x exp I- pA'- Ax exp [-A'I A]cos[;rA IA] + A "- 4" 2)

"x cos {xI A I exp [-A'/ A]sin [ ;rA / 4] + Yr[- pA + B" - D" - (B - D)/ 2]. (2.4.44)

For the case

'4= A" = A.' =0, B = B', D = D', (2.4.45)

one obtains a result that can be shown to be equal to that obtained by Marichev

E(x)= 2(2 ;r)( 1)/2

/ exp I-Ax 1 /cosPrA / AD]

xCosIAx 1 / sin [ A / A]]+ Yr[(l/2 - p)A+ B"- D"]. (2 .4.4 6 )

For the asymptotic series, the residues of all the poles on the right side of the path of

integration that will be called W(x) are needed. The general solution is

H(x)= W(x) + E(x). (2.4.47)

The above equation is all that is needed in general to get the solution. In some cases, one of the

terms is insignificant compared to the other and that will be obvious once the terms are

evaluated. Marichev shows that conditions can be written down so that one term or the other is
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the only significant one. Care must be exercised in using his conditions since he does not

allow the path of integration to separate poles of a Gamma function. If the conditions in

Equation (2.4.45) hold, then one of Marichev's conditions does hold and that is

Condition 1: For _7 > 0, B'- Ž1, then H(x)= W(x) . (2.4.48)

The E(x) term has exponential decay, as one can easily determine from Equation (2.4.46),

and can be neglected.

Asymptotic series have certain properties that are useful. The asymptotic series that have

been derived are all of the Poincair-6 type7 which implies the following properties:

(1) the error in truncation is less than the first term neglected,

(2) the asymptotic series of the sum or difference of two functions is equal to the

sum or difference of the asymptotic series of the individual functions,

(3) the asymptotic series of the integral or derivative of a functi -.n is equal to the

integral or derivative of the asymptotic series of that function, and

(4) the asymptotic series is unique for a given function.

In the above derivations, it was assumed that A > 0. If A < 0, change s to -s in the

integral and then the sign changes so that A > 0, and the above results apply.

1(x) and E(x) are the first terms of the series representation of the asymptotic series.

Generally, for most problems this answer is accurate enough. If more terms of the series are

required they can be obtained by using the approach in Luke8. This approach is very

complicated and different expressions apply for different conditions on the parameters. The

details of this approach will not be given here; however, the results of using it to calculate

additional terms of the asymptotic series will be discussed in the next section.

Asymptotic series and steepest descent contributions can be found in the case where the

integration is in several complex planes. For two complex planes, formulas in Born and Wolfe

in the section on asymptotic series are useful as a starting point. There are two conditions to

look at for the two complex plane case. In the first, one parameter is large while the other is

small; in the second both parameters are large. Extending the analysis given above to these two
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cases does not pose any conceptual problems. The answers obtained have the correct behavior

if one parameter is negligib!e. Since none of the problems considered in this report needs this

type of analysis, it is not given here.

2.4.3 Example and Accuracy of the Asymptotic Series

Consider the Mellin transform of the Bessel function minus unity that was found in

Equation (2.3.11) as

M(Jo(x) -1) =2s 2 -1 s2./ -2 <Re s<0. (2.4.49)

The inverse transform is given in general in Equation (2.3.1). If the above relation is

substituted into that relation, and s is changed to 2s, the function becomes

SI = fd(x/2)-2s T[s*]¢o() - 1r = 11F- - s1 (2.4.50)

The value of A = 2, which requires the path of integration to be closed in the left-half plane.

There are poles at s = -n, for n = 1, 2, .... Remember, the reason that n = 0 is not

included is because of the * symbol, which means that the path of integration passes between

the first and second poles of the function. Evaluating the function at these poles, one obtains

Jo( X) - 1 2[ 21] T
n = I I n!] (2.4.51)

This is just the power series of the Bessel function with the first term removed. This is what is

expected, since the first term is unity and it is subtracted away by the second term on the left.

The asymptotic series has the contribution of the one pole to the right of the path of

integration and the steepest descent path, which is given by the term E(x). This is equal to

l2

J0 X) - 1 L cos[x - Yr/41 - 1.Jr (2.4.52)

An asymptotic series with more terms can be found using Equations (4.11.4-4), (7.4.6-3),

and (7.4.2-8) of Luke to give

J( x) - 1 exp I Cos / 4 1. (2.4.53)

-Tx] 8 8x 368 2
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The two asymptotic series are compared to the actual value of the function in Figure 2-4

and the difference between thb,.,e approximations and the exact value is plotted in Figure 2-5.

The exact value of the function is covered up by the power and asymptotic series because there

is a region of overlap in which either series is a good approximation. As one can see, the

simple asymptotic series in combination with five terms of the power series gives the value of

the Bessel function with an accuracy of better than 1%. This is adequate for most problems. If

ten terms of the power series are used in conjunction with the more accurate asymptotic series,

the maximum error in representing the Bessel function is 0.01%.

2.4.4 Obtaining Asymptotic Series from Power Series

Sometimes the power series solution is known, but the parameter in the summation may be

large. In that case, the power series converges slowly, and there can be numerical problems in

summing large terms that alternate in sign In that case, the asymptotic series representation of

the power series is wanted. The techniques that have been developed can be used to find the

1.2
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Figure 2-4. Comparison of the values of Jo(x) obtained from various approximations.
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Figure 2-5. Comparison of the errors in the values of Jo(x) obtained from various approximations.

asymptotic series. When the summation has coefficients that can be represented by Gamma

functions in the numerator and denominator, then it can easily be represented by a Mellin-

Barnes integral in the complex plane. Once this integral is obtained, an asymptotic series can

be easily found using the techniques developed above.

To illustrate this technique, the double integral of an incomplete Gamma function will be

considered. The power series of the incomplete Gamma function is

X) 0 (_,)n an
na I 0n! n!(a + n) (2.4.54)
n=O

Suppose the following integral is wanted
x W

Pda4=Jdwdyy(a,%y) = Xa+2 " (1)P IX n! (a+ n)(a + n + l)(a + n + 2)

(2.4.55)
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The power series was integrated term by term, a method that is allowed as long as the resulting

series converges, which it does.

For large values of x, this infinite series converges slowly and there are numerical

problems in evaluating the sum of large terms that alternate in sign. It iF desirable to write the

asymptotic series for this function. It is not difficult to see that by using the recursion relation

for Gamma functions given in Equation (2.2.4) this can be represented as

P(a, x) = X a+2  00 (-)' Ella + n]x'" Xa+ 2 jds x- rS (2.4.56)
0= n! F[ a+ 3+ n] 2xi[a3-J

The path of integration passes between the poles of the first Gamma function and the three

poles of the second Gamma function that are not canceled out by the Gamrma function in the

denominator. Since A = 1, the path of integration should be closed in the left-half plane and

one obtains the summation given in Equation (2.4.55). To obtain the asymptotic series, since

Condition I given in Equation (2.4.48) applies, one has only to sum the contribution of the

three poles to the right of the path of integration to give

F~a)x 2  2a +(aG+I)al (2.4.57)
-2 X2 I2

2.5 INTEGRAL EVALUATION WITH THREE OR MORE PARAMETERS

In this section, the method of evaluating integrals with three or more parameters will be

illustrated by working through several examples. The method presented here is based on

heuristic extensions of known techniques of integrating in several complex planes. The cases

considered here in which the pole locations are functions of the sum of the complex variables

have not been investigated to my knowledge. The case in which the pole locations are

separable into the product of terms that only depend on one complex variable has been studied

and is available in standard texts in the field.9 For that simple case, each complex integration

can be considered separately in the standard manner. The case encountered in this report is not

nearly so straightforward. An example of the technique of evaluating an integral in two

complex planes is discussed using the analysis in the literature. Then it is looked at a second



time in a slightly different way, and shown to give the same answer. This second Approach is

generalizable to our problem.

2.5.1 Method Of Integration

Consider the integral

I= ,ffds dt F(s, t)(251
(2V )2 st(s - a)( t + b) ' (2.5.1)

where s and t are complex variables, and a and b are positive.

The function F(s, t) is assumed to have no singularities in the two complex planes s and

t. Both integrations go from -icc to +i-, and the real parts along the path are negative.

Notice that the poles are only functions of a single complex variable. It has been shown in the

literature that the integrals can be treated separately so that this integral can be written as

I f ds fdt F(s, t)(25)
(21') 2 2 (S - a)s t (t + b) (

Suppose the integrand is such that the path can be closed in the right half t-plane without

changing the value of the integration, then the residue at the pole at t = 0 is the only

contribution. The remaining integral is

I -= I ds FS0 253
- (21i) s (s -a)b (2.5.3)

If the path of integration can be closed in the right-half plane in doing the s integration, one

obtains the contributions at the two poles at s = 0 and a to obtain for the value of the integral

SF ( 0 ) F (0,0 ) (2.5.4)- b ab(254

Looked at a little more abstractly in the 4-space of the two complex variables, each of the

poles occurs at a value for one of the complex variables. The value of the other complex

variable can be anything; therefore, the locus of a single pole in 4-space is a two-dimensional

sheet of points. If there were only a single pole in the integrand and it was in the first complex

variable, then the second integration would be zero. There must be at least two poles in the

integrand to get a contribution. Since each of these poles corresponds to a sheet of poles in
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4-space, what one is finding is the intersection of the two sheets of points in 4-space which

gives a single point if the two sheets intersect at an angle. It is easy to convince yourself that

the intersection is a point since there are four parameters to describe a point in 4-space and the

condition to have a single pole gives two equations. Therefore, the simultaneous occurrence of

two poles gives four equations to find the four quantities that describe a point in 4-space.

With this insight, the problem can be tackled in a second way that can be generalized by

finding all the singular points in 4-space that are described by the simultaneous occurrence of

two poles. The properties of the integrand are used to decide which way the path can be closed

to determine which of these singular 4-space points contribute to the integrand. The three

possible double poles of the integral in Equation (2.5.1) are

(1) s =0,t= 0,
(2) s = 0,t =- b, (2.5.5)
(3) t =0, s = a.

The three points above will be called 4-space singular points or 2-poles for short.

From the conditions of closure that were stated above, the values of s and t must be

greater than or equal to zero; therefore, only the 2-poles 1 and 3 contribute to the integral. If

the double integral is evaluated at these poles, the previous answer is obtained. This same

procedure can be used when the poles are linear combinations of the two complex variables.

Consider the integral
/ = 1 2J d dtF(s, t)I ffds dt Fst)(2.5.6)
(21d")2 st(s + rt- a)( t + b)"

The pole that contains the sum of the two complex variables has poles in a sheet in 4-space

also and will intersect the other planes. The sets of 2-poles for this integral are

(1) s=O't =0,
(2) s=0, t=- b,

(3) s=OQs+ t-a=O--s=O,t= a (2.5.7)
(4) t=O,s + t- a=O-- :t=O,s- a.

68



The conditions on s and t that require both of their real parts to be equal to or greater than

zero give valid contributions from the 2-poles 1, 3, and 4, so that the integral is equal to

F(a O) F(0, 0) F(0, -b) (2.5.8)
ab ab + ab )

The generalization of this technique to a higher number of complex planes is obvious. For

instance, for three complex planes. one would have to find all combinations of three

simultaneous poles to find the 3-poles in 6-space. The path of integration was closed based on

the integrand. As we saw before, sometimes the integrand must be closed in the opposite

manner in order to get a rapidly converging asymptotic series. In finding asymptotic series,

sometimes there is an extra term E(x). How to find that term in this problem is discussed at

the end of Section 2.4.2. Typically, for problems of interest when the path of integration is

closed in the wrong direction, one encloses poles whose contribution overwhelm the E(x)

K term that is then neglected.

2.5.2 Two Complex Plane Example

Severai examples are now worked out to illustrate the method on known problems. The

first example considered is the integral of a product of exponentials that is easily evaluated by

normal methods. This example is used to illustrate how to evaluate integrals in two and three

complex planes. A more complicated known integral containing the product of two Bessel

functions and a sinusoid is also evaluated after this. Consider

!f = e du. (2.5.9)
0 i=

For the sum of the a's greater than zero, this is easily integrated to give

1 = a] (2.5.10)

This integral can be converted into the form in which the generalized Mellin convolution

theorem can be applied by making the following changes of variables

aI = x, (2.5.11)
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a2 u= x /y-* y= a1/ a2,..2
a1 tX -y=, 2' (2.5.12)

a 3 u= x -/ zz = a, / a2. (2.5.13)

Then

= a x e e x e x/ d.v (2.5.14)

Using the Mellin convolution theorem given in Equations (1.7) to (1.8), one obtainsa, )-(
, a1 (2 .fJ d, r[s + t + 1,-- S, - ("a(a (2.5.15)

This example is more complicated than the last because of the presence of Gamma

functions. Each Gamma function has poles at all negative integers, and each pole is a sheet in

4-space. One has to determine the intersection of all these sheets with those of the other poles,

however; aside from the proliferation of poles, the problem is analyzed in exactly the same

manner as the previous ones. The combination of all double poles is

- s = -if, - t = - n -4 S = n, t. m.

s+ t+ I=-I,-s -n--$= n> , t=-n - "I-l.
s + t + I =-,-t -in - S =-11 - "I - 1, t = "1. (2.5.16)

The indices n and m are positive integers.

Here A = 0 for both complex variables. The way the path of integration can be closed

depends on the relative sizes of the parameters. Let a, > a2 and a, > a3 , then the path of

integration should be closed so that the real parts of the parameters are greater than or equal to

zero for large values of in and n. Since these indices are summed for some of the 2-poles,

new parameters must be found in which they appear independently. This is easily done by

substituting the above relations in the exponent of the parameters. The constant terms are

neglected since they do not affect the direction of path closure. These relations are:

(1)a '

70



(2) (3(ff
a, / )--na ni '

(3) (2.5.17)

The first set of poles is the only one that converges for both indices, and the integral is equal to

To show the equivalence of the direct result with this double infinite series, note that for

a, > a, an,'o I> c3. one obtains
1n 11 " h'2 +w 3

a1 +a, +a 3  aI+ n=0 (2.5.19)

dsing the binomial theorem when a3 > a2 , one obtains
M-0( a - n( a 1

n=O (af�'a in)'!! (2.5.20)
I =Onj=O - 2 n m!m

If one changes the variables to

m-- n' and n-4 n'- d' with m< n, (2.5.21)

then the summation reduces to the result that we obtained using Mellin transfoni techniques in

Equation (2.5.18).

Therefore, thu Mellin transform method produces the correct result although it was in terms

of infinite seri.s rather than a simple function as in the direct integration. In general, one

would not recogni'z the double series that was obtained as the simple function that was

obtaiied by a dire( t integration. The conditions on the parameters are more restrictive than the

one that the sum of the parameters must be greater than zero obtained by the direct integration.

The order of the inequalities of the parameters can be changed, which -auses other pole pairs to
O be the ones enclosed in the path of integration. These other solutions can be shown to be all

equal.
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The more restrictive conditions on the parameters are necessary to express the answer as a

double sum. From this example, one learns that in solving problems of this type, the

conditions obtained to get an answer, even though they are correct, may be too restrictive. The

fact that an answer is not in the most compact form and expressible in terms of simple

functions is not a major deficiency because more complicated problems cannot in general be

expressed simply in terms of elementary functions.

2.5.3 Example with Four Parameters

The method will now be extendcd to the case of four parameters where an integration over

three complex planes is required. If a fourth exponential with parameter a4 is added to the

integral and a4u = wv. then the convolution theorem gives

1=- 1 - ds dt di r[is +1 + u + 1, -s, -,, -u a a a4

(2.5.22)

where s. t, and u are separate complex variables.

The sets of 3-poles in 6-space are at

(1) -s =-n,-t =-m,-u =-p- -s= n, t = m,u= p,
(2) s + I + u + =-p,-s = -n.- =-m -4-s = n,= rm,u =- -n-n-p,

(3)-s =-n,-u=-p,s + f + U + u =-m--s= n,u= p.t =- - n- -p,
(4) -t --- m,-u= -ps + t + u + 1 =-,--- t = m, u = p, s n- 1 - m -p,

(2.5.23)

where n, m and p are positive integers.

As in the last section, these relations are substituted back into the exponents of the variables

to give:

a, -n _-M nmp

(2) ( a (JI ) - ( ( 4 ",
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(3) a••2 ['- -, aa'• )-a3" "a,' a31

n+n+ p -mpf - P-rn n a -P

(4) aZ~ Q) 1-+i~ (~ al a 2 a a2) (2.5.24)
If the conditions on the parameters are such that all the fractions that are in the integral in

Equation (2.5.22) are less than unity, the value of the real part of all three complex variables

must be equal to or greater than zero. The only pole set that satisfies this requirement is the

first one- therefore, the value of the integral is

-n(-r - P

a= . X I P! . p! a 2 3 a4(2.5.25)
n=On,=Op=O

If the fraction in Equation (2.5. 10) is expanded into a triple power series, one obtains

! (_a, ) j (-) aj) ! •P25.6
'iO--kO •a) I a2) ,a3) (i - j)! (j - k )! k! (..6

S=Oj =-OA=O

I evaluated the series numerically for a few examples and showed that the results of the

series and !he simple fraction were the same.

2.5.4 Example from the Integral Tables

The method will now be applied to an example that is a little more difficult. Consider the

following integral from Gradshteyn and Ryzhik, 10 Equation (6.711.3)
0 ** v ' - 1 -!

I f 14'-v2j(a41)J (bu)sin (cudu = 2  ' - b"VcrtvJ (2.5.27)r(pj + I '
0

witha >O,b >O,b-a> c >OandRev <Rep +3.

This integral will be put into standard form by the following transformations

au= x, bu = x I Y -+.y = al b, cu = xl z -4 •z = a/ c. (2.5.28)

I7



Then

I = V.U J. (x)J )sin . (2.5.29)
0

This can be converted into an integral in two complex planes using the Mellin transforms in

Equations (F.5) and (F.2). After the substitutions s -+ 2s and t -- 2t one obtains

-/ia 2Vdsd(-) p+ 1 2 2+ v -Pj -2s -2t

v / 2-I/2, - s +v/Z1/ 2-t
s -s-- v/2+p +332, s++ I 2+ v2+, " (2.5.30)

The locations of the 2-poles are at

(1) 1/2- t=-n,-s + vi 2=-n -+ s= n+ vi 2,t= m+ 1/2,
(2)-s + v/2=-n,s+ t+ v/2=-m -s= n+ vl2,t=-n - v,
(3) 1 /2 - t =-n, s + t + v/2 =-n-+ ss= -1/2- n- m, t = m+ I/2.(2.5.31)

Since A = 0 for both complex variables, the size of the parameters determines the direction

of path closure. Substituting the above relations back into the exponents in the integrand gives:

-2 n -2m

-2n( 2m

b"C -2 + (a) ( D) " (2.5.32)

If the two fractions in the integral are less than unity, both exponents must be less than zero.

The first set of double poles is the only one that satisfies the criteria, and the integral is equal to
i-02+v-/ (_1)n+m V-2n

n=O m=O n 'b-l2 V+ Am + v a]

-( - + I + n - mr- n, [v+ (2.5.33)
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The term r[ 1 - in - n] in the denominator is infinite at all n and mn except in = n = 0.
This cancels out all the poles except those at mn = n = 0. The one remaining term gives the
same result as that in Equation (2.5.27). Therefore, one obtains the same compact form for the
answer as that in the tables. The particular condition on the parameters produces the simple
form for the result, and the expression is more complicated for other conditions on the
parameters. The method above can be used to get a series solution for these other cases by
closing the path of integration in the appropriate direction.
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3. A UNMAFIED APPROACH TO WAVE PROPAGATION

IN TURBULENT MEDIA

3.1 INTRODUCTION

In this part of the report, the derivations of the expressions for variance of phase and

scintillation quantities, structure function, power spectral density, Strehl ratio and beam profile

are given. The derivation and tabular listing of various filter functions that are of most interest

is presented. The procedure for setting up problems is illustrated by a variety of examples

some of which have not been published before. The evaluation of the integrals using Mellin

transform techniques was developed in the second part of this report, and these results are used

to evaluate integrals in this part.

The filter functions that are derived here allow one to find the piston, tilt, or any Zemnike

component of the phase-, to evaluate the effect of anisoplanatism (displacement, angular, time

delay, and chromatic), finite frequency response, and fitting error on focused or collimated

beams. ( Anisoplanatisni is the effect on the correction caused by propagating along a different

path than that taken by the reference beacon.) Filter functions are also given to allow one to

calculate the effect of point and incoherent distributed beacons on an adaptive-optics system.

The filter functions can be cascaded to allow one to set up complicated problems quickly. This

procedure allows one to calculate the interaction of various effects in a straightforward manner.

In the next section, the general formulas for the beam profile and the Strehl ratio are

derived. In order to evaluate these expressions, the structure function must be found. This can

be found from general expressions for the phase and log-amplitude variance that are derived in

Section 3.3. Approximations are made to arrive at this gene.-al expression. In Appendix B, an

example is worked out without the approximation and shown to add an insignificant correction.

The expressions for the variances, structure functions, and power spectral density are

generalized to focused beams.
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In Section 3.4, filter functions that are useful for turbulence problems are derived. The

final answer to turbulence problems is expressed in terms of moments of the turbulence

distribution. The definition of these moments is given, and analytic expressions for the

moments are derived in Appendix C.

Single parameter problems to illustrate the method of evaluating integrals using Mellin

transforms is given in Section 3.5. The third example shows how to combine filter functions

to arrive at new ones. In Section 3.6 examples of multiparameter problems are given. The

evaluation of the integrals relies heavily on the results in part 2. The evaluation of the phase

variance for a distributed source is complicated and uses all the previous methods. This

example is discussed in detail in Section 3.7.

Next, in Section 3.8 the power spectral density is calculated for several problems. The

Strehl ratio and coherence diameter for various problems is discussed in Section 3.9. The

calculation of the Strehl ratio for uncorrected turbulence is given. When the structure function

is more complicated, Gegenbauer polynomials are introduced to evaluate the Strehl ratio. This

technique is illustrated using defects in an adaptive-optics system. These techniques are then

extended to derive the beam profile for uncorrected turbulence and for an adaptive-optics

system in Section 3.10.

3.2 GENERAL EXPRESSION FOR THE BEAM SHAPE

AND STREHL RATIO

In this section, expressions for the beam shape and Strehl ratio are found in terms of the

phase and amplitude structure functions. The relation between these structure functions and the

phase and amplitude statistics is given.

The extended Huygens-Fresnel approximation to beam propagation that applies to

collimated beams results in the following formula for a component of the electric field at a

distance z from the source r[+4 r, ) • r,), (3.2.1)

E(r, z)= fd#5 E( ,0)exp =-L( -_#) ' (32,1)
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where X and 0 are the turbulence induced log-amplitude and phase fluctuations that are

produced in propagating from the p-plane to the r-plane as shown in Figure 3-1. The

integration is over the source distribution.

MEASUREMENT PLANE

P SOURCE PLANE

Figure 3-1. Geometry of the propagation problem.

The intensity can be found by multiplying the field by its complex conjugate. In the

paraxial approximation that applies to waves ,hat are confined to a small distance about the

propagation direction, a condition that holds for laser beam propagation, second order terms in

/ and # are negligible. With this approximation, and a source distribution W( 1') in the

aperture, the intensity is equal to
Y~i', z)E*('-,)- l dp d#' W(/-)W(p'

[i2xp N• (P + X( ,"•-Xr '+ i[ 0( , P) - 0(, )]

(3.2.2)

The average intensity can be found by taking the ensemble average of the above equation. The

turbulence fluctuations are Gaussian in character and for this distribution one can show that

(exp (aA)) =expT -- A2 - A2 (3.2.3)
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The angle brackets indicate that the ensemble average of the enclosed quantity is to be found.

Therefore, the average intensity is equal to
(E(,--', )E,(,, ))( )21 d• d#'W(f)W(#')

x exp D D, 2- D D P 2]D

(3.2.4)

The struc, re functions of phase and log-amplitude are defined to be

[( _ + ZD)- ()]

To simplify this expression, change the variables of integration to normalized sum and

difference coordinates as

( + )2D, (3.2.6)

D ) , (3.2.7)

where D is the diameter of the circular aperture, and a is the normalized radial coordinate that

goes from 0 to 1.

For cases in which the variance is independent of position, the structure function can be

represented by a relation that only depends on the difference in position of the two points, and

can be written as

D 0(0)]= lI (O)) - ( x(dD) X(O))J(2

The assumption of writing the structure function as a function only of the difference of

positions is not true for many cases of interest. If tilt is subtracted from the phase over the

aperture, then the phase variance is higher in the center of the aperture than at the edges. For

the anisoplanatic effect of a point source over the aperture center being used as a beacon in an

adaptive-optics system that is sending a collimated beam, the phase variance is again no longer

stationary. In this case, the variance is higher at the aperture edge than at the center. In the
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discussion of tilt removal, it will be pointed out that the error made in using the above

expression is about 10% and may often be neglected. The error in assuming stationarity for the

focal anisoplanatism case has not been calculated.

For a uniform field distribution over a circular aperture, the integral over the sum

coordinate can be performed analytically in the following manner. Expressing the original

coordinates in terms of the new ones as # = d'D + 6D/2, and p '= •'D- OD /2.

then the integral of the intensity can be expressed as

I= fd# d#'W ( g)W ( P')L(

Jf ditd6V'W (d'D + D / 2)W (6'D - •D/2)L(0).

The integral in the sum coordinate is the overlap area of two circles and is evaluated in
Figure 3-2. If the expression for the intensity in Equation (3.2.4) is divided by the
intensity with no turbulence present, one obtains the normalized average intensity as

dIt lr K (a)ep[.0-. r
ln(r)•_dr K(2)exp[i_ _. t D-T.)] (3.2.9)

where the integral is over the unit circle, and the modulation transfer function for a circular

aperture is given by

K(a)= lcos-l(a)- a,(l JU(I- a), (3.2.10)

where U(x) is the unit step function. The structure function is given by

D(d) = D0(a) + Dx(a). (3.2.11)

If the structure function is isotropic, the angle integration in the aperture can be performed

using Equation (3.4.5) to give
I(r)f d (J koiDt) [_ D(a) (3.2.12)

In( r) = JadaK(a)Jo z )exp L- 2i (32.2

0

The Strehl ratio, which is the value of the normalized intensity at the origin, is the most

common description of the performance of an adaptive-optics system and is given by

SR=-I- fAfdetK(a)exp[ D(a)] (3.2.13)
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B

,...a D

p P

Figure 3-2. Geometry to determine overlap area of the two apertures. The
integral over a*' is equal to the area of overlap of the two circles. The area of

overlap is equal to Area(FBCD)= 2 Area(DEBC)= 2[Area(ABCD) - Area(ABED)j
where Area (ABCD) 2(D20/8) = (D214) cors a and Area (ABED) = 2 Area (AEB)

2 [(aD)2/2] sin 0 "(aDD/4) v/1!. Therefore. Overlap Area= (V/2) (cosr"
a - . % Normalizing to give unity for the intensity on axis with no
turbulence, one obtains the desired result K(a) (161r) (cos'- a - ci/Vf ).
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When the structure function is isotropic, the integration over the angle in the aperture can be

performed to get

I D(
SR =f JtdtK(or)exp[- 2 2 (3.2.14)

0

The beam profile and Strehl ratio given in Equations (3.2.9), (3.2.12), (3.2.13), and

(3.2.14) will be evaluated in Sections 3.9 and 3.10 after methods are developed in the

intervening sections to determine the structure function for particular problems.

3.3 GENERAL EXPRESSION FOR THE PHASE AND LOG-AMPLITUDE
VARIANCE, STRUCTURE FUNCTION, AND POWER SPECTRAL
DENSITY

In the first part of this section, the relations for the phase and log-amplitude variance are

derived using results from Tatarski for a locally stationary media. His derivation is sketched in

this section, and the reader is referred to his book for a more detailed derivation of the results

that are used here. The difference between Tatarski's results and those used here is that a filter

function is allowed to operate on the transverse components of the spatial spectrum. This

generalization allows one to tackle a great variety of problems of interest. From these

expressions, the structure function and power spectral density are found. The equations

developed in this section are summarized in tables in part 1, and serve as the starting point for

all the turbulence problems considered later.

3.3.1 Phase and Log-Amplitude Using the Rytov Approximation

The Rytov approximation is a better approximation than the geometric-optics one. The

equations of geometric-optics do not take diffraction into account and can only be used to

distances that are small compared to the Fresnel distance. The Rytov approximation does

account for diffraction and can be used past the Fresnel distance. The approximation breaks

down for the log-amplitude when that variance is greater than about 0.3. The phase results are

still valid even when the amplitude fluctuations are large. The net result is that this
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approximation gives accurate results for the phase for all problems of interest. The results for

log-amplitude are accurate as long as this variance is small. That assumption is violated for the

propagation of uncorrected beams over large horizontal distances or in propagation from the

ground to space: however, it is valid for a beam corrected by an adaptive-optics system. In

high-scintillation cases, a multiple' scattering theory is necessary to describe the log-amplitude.

That will not be done in this report.

The derivation of the equations for phase and log-amplitude using the Rytov approximation

are sketched below. A more detailed derivation is in Tatarski. The wave equation describing

the electric field for propagation in a region with inhomogeneous refractive index, n( r) is
V,2/ + ko 21 ( F-)9" + 2V [/" • V In n( ,?-A) = 0,(3.1

1 0 ( 12

where the free space wavenumber ko = 27t/., and V 2 is the transverse Laplacian. If the
II

propagation wavelength, X, is much less than the inner scale size, the last term can be

neglected. One then obtains a scalar equation for each of the electric field components. The

equation for one of those components is

Vu kon (ir)u 0. (3.3.2)

It will be assumed that the effect of the inhomogeneity is small, then the field and refractive

index can be written in two parts as

n(r")= 1 + nh1(rF), (3.3.3)

u=uo + u1 9 (3.3.4)

where nhr"*) < < 1, (3.3.5)

and I U0 << I U01. (3.3.6)

The unperturbed field satisfies

V ,u 0 + kjou o= 0. (3.3.7)

The field affected by turbulence satisfies
2= 2

koI=-2kon (P')Uo. (3.3.8)
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The central part of the Rytov method is to represent the field in the form

UI = A exp [ iS]. (3.3.9)

where A= Ao+ A1, (3.3.10)

and S- S= S=Im , (3.3.11)

A U1
Let In "A = =Re 1, 0 (3.3.12)

Alsodefine 4'=ln u =In A+ io. (3.3.13)

Express this quantity in the form of a small and large an as

IF= Wo+ W 1 (3.3.14)

where W1= + io1. (3.3.15)

The following assumption gives this method the alternate name of the method of smooth

variations. Assume
0 (3.3.16)

Then the following equation can be derived

V 2 + 2 iko- 2k 2 onlir-) = 0.
t WV1 +2 0 &. 2 0 n1 ,)O (3.3.17)

Write the refractive index in the form of a random function with stationary increments as

?I I-, :) = n (O, :) + jdv(k', :) [1- exp( i ' (3.3.18)

w;. .re F; is the transverse coordinate. The integral is over kappa space and the fact that the

transverse Fourier transform is used to solve the problem gives the solution method the name

"the method of spectral expansions". This is a stochastic Fourier-Stiltjes integral, and the true

complexity of this relation is buried in the differential quantity in the integral. Also, write the

field in the same form as
T,(r-, z)ff 'F(O, z) +jd9( k, Z)[l-exp ik"Ft] (3.3.19)
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If these last two relations are substituted into Equation (3.3.17), it is found that the differential

quantities must satisfy the following relation

2 iko d , z)- '2do( r, z) + 2 k2odv( i, )=0. (3.3.20)

This equation holds when the propagation distance, L, satisfies

L L< D4/ , (3.3.21)

where D is the aperture diameter, and X is the propagation wavelength. For diameters of

interest, the range over which the assumption is valid is very large and the condition is satisfied

for most problems. The solution of this equation for a wave propagating from 0 to z is

dep(R, ) i, 0 fdv( )exp[ 2 ko- d:. (3.3.22)

This equation is the starting point to find the variances of the phase and the log-amplitude. If

there is spatial filtering of the transverse coordinate of the refractive index spectrum, then the

above derivation holds except that the refractive index spectrum is replaced by the filtered

spectrum using the substitution
dv( P, z ) -)dv( e, Z ) G( 9,z , (3.3.23)

where G ( ie, L) is a composite filter function that modifies the turbulence spectrum. The

justification for being able to write a filtered refractive index in this form is contained in the

discussion of filter functions for Zemike polynomials in Subsection 4.1.

3.3.2 Variances, Structure Functions, and Power Spectral Densities

In spatial transform space when the Rytov approximation applies, the two-dimensional

transverse spatial Fourier transform of the phase can be obtained from the imaginary part of
Equation (3.3.22), which is.

L K(L - z')F, [doi(L)] = ko, f dv( 1-, z') Cos 2k-o ( 'z') dz. (3.3.24)

0

The origin of the wave is at z = 0. The filter function for phase related quantities operates on

the phase disturbance.
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The Fourier transform of the log-amplitude scintillation can be obtained f-om the real part

of Equation (3.3.2) which is

L A(L)- L')
Frtdx(L)] = l[-•n A .0 kfdv( sin 2 G( W, z') d:'. (3.3.25)

The last formula breaks down when the log-amplitude variance exceeds 0.3. For more severe

scintillations, a multiple scattering theory approach is necessary. That will not be discussed in

this report. Even for large scintillations, the formula for the phase is still valid. The restriction

on the scintillation is important for uncorrected propagation from the ground to space and for

horizontal propagation over long turbulent paths. The restriction is not important for most

problems considered with adaptive-optic systems since it will be seen that the scintillation is

low.

Typically, the rms values of the quantities are wanted. These are obtained by integrating

the expressions over kappa-space, multiplying the resultant expressions by their complex

conjugate, and taking the ensemble average. The resulting expressions for the phase, ,2, and

log-amplitude variances, X2. are

F 21L L

2] 0 0
Cose2(L - z") Co (L -

2k cos 2k
jsi 2 [G ( G, P'll', z'l (3.3.26)le (L -K' )-snz2ko ,
sin 2 k "']in 2

The first two integrals are over kappa and kappa-prime space. This equation can be simplified.

The ensemble average of the absolute value squared of the refractive index is given in Tatarski

Equation (6.36) by

(dv( z dv*( 9',z ")}= En( i, I Z'- z ,I)c 2[(z '+ z ")/2]8( k - •d)de di',
(3.3.27)
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where the delta function occurs because the turbulence fluctuations at different wavenumbers

are completely uncorrelated - a fact that follows from the assumption that the turbulence can

be represented as a random process with stationary increments. C2(: ) is,p)i a normalizing

function that is proportional to the strength of turbulence. En( ?,I z' - z"1) is the correlation

function of turbulence versus axial separation as a function of the transverse wavenumber. It is

equal to the inverse Fourier transform in the axial direction of the turbulence spectrum. The

inverse Fourier transform relation is given in Tatarski Equation (1.53) as
@0

0.033 Yr f(K, K-)= jd:. E,(i0, z_)cos( z z_). (3.3.28)
0

This gives the special case
0.033 i'f(K',0) = fd_ En( , Z_), (3.3.29)

0

where the turbulence spectrum is often represented by the following von KMirmn spectrum

(normalized to unity coefficient)

17-11/62f( ) =[ , + -l/exp [ I-ic2/ic (3.3.30)

where ico = 2n/Lo and Ki = 2"t/Li. Lo is called the outer scale of turbulence, and Li is called

the inner scale. The shape of the spectrum in the region where the inner or outer scale are

important is not known in practice, and these forms are used because they are physically

reasonable and mathematically convenient. Other models have been suggested and the

techniques developed in this report can be used for those. Only the von Kirmin spectrum is

used in this report. Typically, inner and outer scale do not affect the final answer. Care should

be exercised in comparing the results with outer and inner-scale effects included obtained here

with those of other authors. Some define these quantities without the factor of 27C. If inner
and outer scale are negligible, one obtains the commonly used result

f ( K) = K-1 I / 3 (3.3.31)
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After inserting Equation (3.3.27) into Equation (3.3.26), the integration of the delta
function in W' can be immediately performed, and the expression has now been reduced to

k; fd' f d:, c2( : -) d[] *( f z")

X2J 00 02 a

(3.3.32)

whe[c (:[o L)" K(:"- L)"

~C P] 2k0  J 2k 0

wsinL 2 kL) sin 2 k J

with the region of integration in :' and -" space shown in Figure 3-3.

Z

L

LL

Figure 3-3. Original region of integration.

One of the axial integrations will now be eliminated. Change the variables of integration

into sum and difference coordinates by the transformations

z-= z'- z", (3.3.34)

89



I-

and " = -("'+ Z")"2" (3.3.35)

where the new region of integration has been transformed from the rectangular region into the

diamond shaped region of Figure 3-4.

Zz

L

-L L

Figure 3,4. Region of integration in transformed space.

The transformed equation is
k 2 ko jd-- dz C' ) _En ,Iz-) Ca

,X2] Diamond n [Ca
x× G( R, - + z-_/!)G*(• z - z- / 2). (3.3.36)

In order to eliminate the integration over z-, Equation (3.3.29) can be used except that the

integration goes out to infinity, while the integration above has finite limits. In addition, there

are other functions in the integrand that depend on that coordinate. However, the correlation

function of the turbulence only has significant values over a range of tens of meters, a distance

that is generally very small compared to the entire integration path; therefore, the difference

coordinate can be set to zero when it is added to the sum coordinate. For the example of

tracked tilt that is considered in Section 3.5.6, the results of performing this calculation without

this approximation are derived in Appendix B. The magnitude of the error using the above
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assumption was about I part in 100.000,000. Therefore, this approximation has a negligible

effect on the final answer. This assumption makes the correlation function the only one that

depends on :-.

The difficulty with the finite limits of integration will now be resolved. Since the

correlation function is even in :-, the integral is twice the answer obtained using only the

right-hand side of the diamond. The only part of the diamond shaped area that contributes to

the integral is a thin strip close to the vertical axis since the correlation function falls off very

rapidly with distance. Therefore, the diamond shaped area can be extended horizontally to

infinity without significantly affecting the value of the integral. Doing this, the limit of the :_

integration goes to infinity, and the use of Equation (3.3.29) allows this integral to be

evaluated. With these approximations, the integral reduces to

L 0.2073k(: - 1)"
2 )Ldd (2) o (,?, (3.3.37)

[X2] = 0.2073k' 0 0 n(: )Jdg f {sin 2 K2(:- L)

The filter function can be a cascade of individual filters in which

G( J, Z)G *(PF, :)=rIF i(IF", Z). (..8

i

For problems of laser beam propagation in the near field, An important simplifying

approximation can be made. Since the argument of the trigonometric function is small, the

ccsine term can be replaced by unity, as

cos2 2 k0 L) 1. (3.3.39)

Similar expressions can be derived for a wave focused at the target and at the observation

point. For the case of a wave focused at S, Tatarski shows that the phase and log-amplitude

are -iven by
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dL ) 2k•-,, -,-",o -IT.

[ ] dv( I G( R: d:'. (3.3.40)

Using the following property of the refractive index average for focused beams from Tatarski

Sv - :S _ :, ,[:12

2 R( -Z"

X -S- d ' (3.3.41)

and repeating the same steps as above, one obtains for a wave propagating to the focus

[2- L _5/3 C 2F K ( - z()S _

o. 2o73k If-d:c,2(:)fdR f (PO 2k oS(
2] 0 -]5/3 sin  1jfl(S - z

: 2koS

(3.3.42)

To obtain the same quantities when propagating from the focus to a point S, the general form

can be found from the above result by making the substitution z -4 S - : to get

[2] L S- )5 / 3 Cos [2 k2 s]

0. 2073 krd: C2(: ) jdk3 f( K) I

X ]J 0 Vn S- / sin 2 2 K(z-S)S-

(3.3.43)

Similar formulas for the structure function will now be found. When the structure function

depends only on the difference between the two coordinates, the displacement in real space is

equivalent to a phase shift in transform space, as is seen from the following property of Fourier

tmnsforms. The transverse Fourier transform of a function is

F1(f( a)) =J•d f( d)exp [ if,], (3.3.44)
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then

F,[f(d0 + 6'D)] = fdaf( a- + otD)exp [ ii. a] = exp [-i .'*D] F,[f(J)]. (3.3.45)

Using this relation and Equation (3.3.37), the structure function is

L

E 2 2- C2(-f df (1)Cos2 F(• 1R4,

Dx(c•)JO27k o ___I_ Fi____

0 0
x 11 - exp { ij .- C0)2

0416k2 f d: C;) 2 a f ?f(,K) Cos-" OIi

0 •

Therefore, the structure function for a collimated beam is given by

D Zd ) LCs 2 ( _Ld [r°` o.,,0 .o44 2 fd_ C2.(T=) f dk (pc) co l k• -

0 
[sin[2 2k--o

x [I- cost R•. -D}] rF i (IF, z.(3.3.47)

The structure function for a beam focused at S is given by

'Lcos 2'K2 S(S

0•, 2[ks -
0 [_Z sin 2 k0

x[I-Cos{ K . Id}] IFi(o, Z).
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The structure function for a beam focused at - 0 is given by1 L [
L 3- :5/3Cos 2[ K:S

0o.4146 k,,jd+ ',: c(:d9 fPc(5 }S
X [I-os COIk. D}] ]"F i(le, .

(3.3.49)

The cause of any time changes in the turbulence are due to either wind moving the

turbulence past the viewing volume or due to the slewing of the beam. Tayler's frozen

turbulence assumption is used hece and it assumes that the turbulence itself does not change in

the typical time scales of interest. With this assumption, the power spectral density can be

found by a change of variables. The transverse spatial coordinates will be changed to one over

temporal frequency and another convenient coordinate. It will be recognized that everything

multiplying the differential of omega ( the temporal frequency variable) is the power spectral

density. Assume that the wind velocity, v(Z), is in the x direction. Then, one can write a

relation between the wavenumber in the x direction and the temporal Trdian frequency as

x = i(:). (3.3.50)

Make the additional change of variables

C2  ,2 +1 (3.3.51)

from which follows

7c" 1d (3.3.52)

The last change of variables was selected since it produces an integrand for which a Mellin

transforiri exists and is given in Equation (F.9). Express the relation for the variance given in

Equation (3.3.37) in terms of these two new variables. Interchange the order of integration so

that the omega integration is performed last, and express the integral from -,- to +-- as double
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the value of an integra; from 0 to +aa. After these steps, the general formula for variance can

be expressed as an integral over omega. The power spectral density is related to the variance as

d F (w . (3.3.5-3)
0

Using this relation, the temporal power spectral density can be identified in the equation that

was just derived. The one-sided power spectral density for a collimated beam is given by

F(a))= 1.3o3k o) fd: CO) cdc U ( - v)

rcos2[a2'2. - L)"Cs2 [1,2(: )k n io'

2[ "0)2c2(: )

22(: A0 °

Similarly, the power spectral density for a beam focused at S is given by

F (wo)= 1.303k 2o) fd:.C11 f 'cdc U(0-c) r w

0 1[ 12(: (]r /3 "o 2[-c 2S (S -_

5/ i [0 2c2S (S - I. ,(:)' 1(3.3.55)

The power spectral density for a beam focused at : = 0 is given by2L C,2(z cdca, U (-I

F(w)= I.303kO¾ fd:,' ' : r[wc]

D.5/32

:(S : -- Cos2 2t, 2)2c:S
S. " z , )k(•_ s ) "I

x .53 IsiL,'(:)' ]" (3.3.56)
(S S )'/%in 2 2,, )2c2zS"

(: )k,(z.- S]
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This technique can be used to find the error spectrum caused by a servo system ihat tries to

correct an adaptive-optics system for turbulence. If there is a servo system with filter function

given by Fi[,. 7::], the residual spectrum of the system is easy to find. Cases for simple

servo system filter functions are derived in Scction 3.5.8.

The important equations developed in this section that are repeatedly used to solvt

turbulence problems are summarized in Table A in part i.

3.4 FILTER FUNCTIONS

In the last section, general expressions for the phase and log-amplitude variance, structure

functions, and power spectral density were derived. To solve a specific problem, it is still

necessary to insert the filter functions that modify the transverse spatial spectrum to determine

the structure function. In this section, the filter funrtions for various operations on the phase

and scintillation are deried. There is not a standard nomenclature for these filter functions. In

this report, the complex filter function that operates on the field quantities will be called "the

complex filter function." The absolute value squared of the complex filter function that is used

to multiply the spectrum of turbulence will simply be called "the filter function."

Circular apertures are the primary focus of this report, and fiMter functions applicable to

them are derived. Filter functions for other aperture shapes such as rectangular can be derived,

but not here. Mks units are generally used throughout this report and the filter functions that

are derived here will yield phase variance as radians squared and angles as radians squared. If

the units are not Mks, they are stated explicitly. First, filter functions will be derived to extract

any Zernike polynomial from the phase. For adaptive-optics systems, anisoplanatism is

important, and filter functions for the various kinds of anisoplanatism will be derived. Finally,

the filter functionm. for distributed and point sources will be found.

5 For circular apertures, the following relations for Bessel functions are repeatedly used.
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The recurrence relations for Bessel functions are

d[ rPJ ,(ar )_
di- of (ar). (3.4.1)

and d [ ]-1 , -j 1(ar). (3.4.2)

From this, two special cases are found as

d[ #J,(ar)]
- a"Jo(ar), (3.4.3)

and T&r[ Jo(ar)] = --aJl(ar). (3.4.4)

The following integral is also used

Jo(r*)=- !Jdo exp [ i( rcos 1)]=- I dipcos(rcos

=-Ij- Jd~pcos(r sin v).(34)
0

3.4.1 Zernlke Components of the Spectrum

Often one wants to extract or subtract a Zernike mode from the phase. The filter functions

to do this are easily obtained from the spectral representation of the Zemike polynomials over a

circular aperture of diameter D given in Noll. 12 The expressions in Noll are for an apertu, e of

unit diameter and they are modified to apply to an aperture of diameter D. The definition of

the Zernike polynomials are

Z (N, n) ="n+ R "'( rD / 2)-'%2 cos mO, (3.4.6)

and Z (m, n) = 7 I Rn( PD / 2 )V'2" sin me. (3.4.7)

Fir the above two relations, m € 0. The odd and even subscripts give the x and y

components of the distortion. In addition,

Z (0, n) = vn+ R 0 (rD 2). (3.4.8)

The radial function is given byI9



("-m )/2 (4 (n - q)!(?D / 2)"-2q
R nm(rD !2)= q [(n + m) /2- q]![(n - m)/2- q]! (3.4.9)

q =0

There are requirements that m S< n, (3.4.10)

aria II I - I is even. (3.4.11)

The reason these polyaomials are of interest is that they correspond to the common optical

aberrations one encounters. Z(0, 0) is the piston, Z(1, 1) is the tilt, Z(O, 2) is focus,

Z(2, 2) is astigmatism, Z(1, 3) is coma, and Z(O, 4) is third-order spherical distortion.

The Zemike polynomials defined above are orthogonal over the aperture. The following

relation expres,'es that fact

mm (3.4.12)

where the aperture function has a finite value over the aperture. Expressed in terms of the unit

step, it is
4U (DI/2 -I rI)

W (rD 2 (3.4.13)

The coefficients of the expansion of a phase function are given by
a( m, n) = jdr-" W ( r-)(C ( )Z ( m, n) . (3.4.14)

For turbulence, the expansion coefficients can be considered to be Gaussian random variables,

and the variance of the coefficients is given by
(a( m, n)at* ( ni, n)) = j dF di'" -W ( r-)W ( r"')C ( rý, r-"')Z '( n. n)Z* n, n). (3.4.15)

where C( r-, r") is the covariance of the phase function. The prime on the Zernike term

indicates that it is a function of the primed coordinate system. In Fourier transform space this

can be written as

(a(m, n)do(m, n)) =fi dR die Gm. o(r)f'(w*, jk')5( R- Ke)G M,n(R'). (3.4.16)

The delta function is the result of the fact that there is no correlation of different wavenumbers

in the turbulence spectrum - a fact that follows from the assumption that the turbulence can be

represented as a random process with stationary increments, thereby, allowing the covariance
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function to be written as a function solely of the difference of the coordinates. G,,, ,(W) is

the Fourier transform of the Zernike polynomial, Z ( n, n). Performing the integration over

kappa prime, one obtains

((a( m. n) a*( m, n)) = JdK' G6n( Wig)G rn,n(o)f'(R), (3.4.17)

where fP( •) is the spectral density of the turbulence. This expression shows that the Zemike

components of the phase can be extracted by multiplying the turbulence spectrum by a filter

function. Noll shows that the Fourier transforms of the Zernike polynomials are

Geven m. 2J, ')/ 2) H ) (nl i n)%/2" cos(mip),

Goddn', n(e) =v/;+ 1 / 2 (-1)(n - M)/1 2i n%/f2 sin (m(p),

G "11 1(i) j ( - 1)n12 (m = 0). (3.4.18)

These are the complex filter functions to extract the Zernike polynomials components.

Therefore, in order to extract a given rms Zernike component from the phase, the Fourier

spectrum of the phase must be multiplied by the absolute value squared of these complex filter

functions. The absolute value squared of each Zernike component is

F odd m. n(r) I=(n+l1) A•D/2 2 sin 2(m q)),
Fn (K) W ( ?1 (m=O). (3.4.19)

Of particular interest in many problems are the piston and tilt filter functions. Two

representations of these filter functions will be given. For the piston, the first representation

gives the filter function that extracts the phase variance due to piston. In the second

representation, the filter function extracts the physical distance due to this piston. For the tilt,

the first filter function extracts the phase variance due to tilt, and the second extracts the angle

in real space of this tilt. For different problems, one or the other representation is appropriate.

All the filter functions will be represented by the same symbol, F(PC', z). The piston phase

variance filter finction is given by the condition n = m = 0 and is equal to

[ 2 J,(iD /2)]2
F(Wv, z) = xD / 2 "(3.4.20)
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This filter function extracts the phase variance due to piston. To obtain the second

representation that extracts the piston itself, the filter function would have to be divided by the

wavenumber squared to give

R" z2, / 2( 2 (3.4.21)

The piston is also the average value of the quantity over the aperture; therefore, this filter

function can be used to calculate effects such as aperture averaging of scintillation or the

twinkling of stars and planets.

The filter function to determine the phase variance from tilt is given by the term n = m - 1

and is equal to

Fy(I", z)= L D /2 sin 2 (), (3.4.22)

The two-axis tilt phase variance filter function is given by the sum of the two components and

is

SF(e, z) = 4J(x /2) (3.4.23)

"Very often, one wants the second representation that extracts the tilt variance (angle in real

space). In that case, the phase variance from the tilt must be averaged over the aperture. One

finds that the filter function to calculate the tilt is a factor of (4/koD)2 times the phase variance

filter function and is given by

, 16 2 r / 2) ]2

"'' k0 D} L mD)/ 2 J(3.4.24)

The x and y components in this case are

FY(i-, Z) (k 0 D)[ D , /2l sin 2q) (3.4.25)
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In some problems, the total phase variance is calculated, and one would like the variance

with some Zernike modes removed. This is easily done by subtracting the phase variance due

to these components from the tots' ,ariance. For instance the filter function to remove piston

and tilt is

F[, 2 2JI(AD /2)1 2 4J 2( K / 2)] 2

F(--, :)44J)K1 /2 J (3.4.26)

Implicit in the expression above is the requirement that the cross product terms of the piston

and the tilt average ir, some way to zero. In calculating the phase variance over an aperture,

this is true because the Zernike polynomials are orthogonal over the aperture. The situation is

not so simple if this is applied tri [he structure function. In the expression in Equation (3.2.4),

the aperture average is of the exponential of the structure function. For this case one cannot

use the orthogonality condition to eliminate the cross product ternis. Another way of

eliminating these terms is to assume that the ensemble average of these terms is zero. This

assumption is true only if the Zernike polynomials are also the Karhunen-Lo~ve polynomials of

the problem. Unfortunately they are not, but for the low order Zernike modes they are very

close to those polynomials. Therefore, the assumption that these terms are zero produces a

small error that is less than 10% in calculating the Strehl ratio. This problem is discussed again

in Section 3.4.5.

The filter functions to extract the tilt over an 3nnular aperture with inner diameter Di has

been found by Shelton 13 to be

F ~~16 2jT2(D/ ) 3J2(Kfi//2) 2(.27F(k,z ) [D -I / (3.4.27)

where DI D. (3.4.28)

3.4.2 Gradient Tilt

The Zernike component of tilt is also referred to as the Z-tilt. Some tilt sensors respond to

this tilt while others respond to a quantity that is closer to the Gradient tilt. For instance, if the
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individual tilts measured in each subaperture by a wavefront sensor are averaged together, then

a quantity that is close to the average transverse gradient of the wavefront across the aperture,

which is called the gradient or G-tilt, is the result of the measurement. The definition of this

quantity is

G -Tilt f fdi' V 2O( P), (3.4.29)

where the integration is over the circular aperture. The calculation of the G-tilt is equivalent to

calculating the average piston of the phase gradient. This can be calculated in transform space

by multiplying the piston component of the phase by iic/ko and taking the absolute value

squared of the quantity to give

2

The x and y components of this tilt are
Fx(W, ))I = 2) j 2 (D /2 [cos2(op),

= )J k 0 ) I" sin 2 P) . (3.4.31)

The filter function to calculate the phase variance due to G-tilt is obtained using the same

arguments as above, to give

F(e, z)=J1 2 (Wd / 2). (3.4.32)

The x and y components of this tilt variance are

FX(W' :)= 2 (cos 2 (q9),

Fy( z), : (d I/ sin 2) ). (3.4.33)

The G-tilt filter function for an annular aperture has also been found by Shelton to be

F (,z =(>Jl(cD / 2) - AJcfL D / 2)]. (3.4.34)

If the derivations are repeated for spherical waves, then one finds that iCD has to be

replaced by xD(z) in all the filter functions.
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3.4.3 Anisoplanatic Effects

Anisoplanatism is an effect encountered in an adaptive-optics system in which the beacon

return propagates down a different path than the outgoing laser beam. Therefore, to derive the

filter function, the difference between the Fourier transforms of the quantity of interest at each

point on the path must be found. Since a displacement in real space is eq•,ivalent to a phase

shift in spatial transform space as shown in Equations (3.3.45), the only difference between

the quantities along the two paths is a phase shift that can vary in the propagation direction if

the displacement changes. Therefcre, the filter function to be applied to the phase for each

realization is unity minus this phase shifted term. The filter function due to this difference in

paths through the turbulence is the absolute magnitude squared of that quantity and is given by
F(Pe, z)f=f11- exp [ ik• d"J(z.)112= 2 [1- os{ ie . do( z)}]. (3.4.35)

There are several reasons why the paths can be different as shown in Figure 3.5, and this leads

to different functional dependencies for d.

If the two paths are displaced a constant amount, d is a constant, and the path displacement

is given by

d"()= d" (3.4.36)

If the two paths coincide at the origin but differ by a constant angle, 9, the path

displacement is given by

(z) = oz:. (3.4.37)

If there is a time delay, r, that is short compared to the turbulence mixing time and the

Taylor frozen turbulence assumption is valid, the displacement in this case is given by

W( ) = -(z )'. (3.4.38)

If the beacon beam that senses the turbulence has a different wavelength than the laser beam

that is sent out, the two-beam will take different paths through the atmosphere because of its

dispersive properties. The analysis given here parallels that given by Belsher and Fried.14

Geometric optics is used to obtain the path displacement for chromatic anisoplanatism. To
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Figure 3-5. Various rypes of anisoplanarism.

reach an exoatmospheric target, it will be assumed that the rays at different colors are
propagating at the same angle at the target. Even for near-earth targets, this is a good
approximation as is shown in detail in Section 3.9.3.4. If n(h) is the refractive index seen by
the first wave, and n(h) + An(h) is that seen by the second, and 4(h) is the zenith angle of
the first, and 4(h) + A4(h) is that of the second, Snell's law which states that n sin(t) is a

constant gives

A4(hi) = .-An ( h)tan[4 ( h)]. (3.4.39)

This can be integrated along the path to yield

J~)Jdz A(h)= - co 2(4 si 4)A0 Jdx awx. (3.4.40)

where An o is the 4ifference in refractive index between the two colors at wavelengths X, andI )62 when the wavelengths are given in micrometers, and a(x) is the normalized air density
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I
versus altitude. These functions have been approximated by Belsher as

A229498.1 255.4 -
0  X2 (146a A 1)(146A' - i) + ( - 1)(41 )I 0 (3.4.41)

a( h) - exp[-l. 11 X - i < 10 kin,

a( h) = 1. 6 exp[-1. 57 x 10-4 hi h > 10 km. (3.4.42)

A plot of the absolute value of the difference of refractive index between a wave at 0.5

micrometers and other wavelengths is shown in Figure 3-6.

& 14

U.
"12

10

II

0.3 0.6 0.9 1.2 1.5 1.6 2.1 2.4 2.7 3.0 3.3
WAVELENGTH (pim)

Figure 3-6. Difference in refr-active index between O3prn and anothrruwvrelength.
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The normalized air density versus heigh- is plotted in Figure 3-7.

100

0 5000 1 o15000 20000
ALTITUDE (mn)

Figure 3-7. Normali-ed air density versus altitude.

3.4.4 Distributed Sources

Distributed sources are of interest for many problems. The light from a planet is from a

source of finite size, and this has to be taken into account if one wants to calculate the phase or

scintillation from that source. For many adaptive-optics systems, the beacon source or

reflector is a point source or a distributed source and the corrected signal is a collimated beam.

The question that arises in this case is how much does the difference in the paths of the beacon

signal and the corrected beam affect the phase variance on the corrected beam. The variances

due to this effect vary over the diameter of the aperture and are not spatially stationary. For that

reason a structure function that depends solely on the difference in aperture positions cannot be

written down for this problem. However, one can still calculate the average variances over the

aperture. In adaptive-optics systems, the phase variance s small, and Mardchal's formula can

be used to determine how much the Strehl ratio is degraded by this effect.
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Consider a point source beacon at a height H displaced from the center of the aperture by a

distance " as shown in Figure 3-8.

BEACON

H

2b

SD/2 D/2

Figure 3-8. Geometry of a point source beacon.

If Fr is the position of a ray coming from the aperture, the anisoplanatic distance ftoro the

collimated ray coming from that point is

d (- ). (3.4.43)

The above relation can be used to find the phase variance at any point in the aperture. This

phase variance must be averaged over the aperture to obtain the filter function for the average

variance due to a displaced point source compared to a collimated beam. The filter function is

equal to

F~•,~fi--- edr" l- Cos( .- -HL[':.b] (3.4.44)

This filter functinn produces the phase variance with all the Zemike components included. If

one wanted tc obtain the phase variance with some of these modes removed, this expression

would be multiplied by another filter function that removed these components in the manner

described earlier.
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The integral over angle in the aperture can be performed using Equation (3.4.5) since
2x 2sx

I j dq)cos(a cos((p) + c] = Re jdqf exp[ it a cos( O) + c)= 2 x cos(c )Jo( a).
0 0

(3.4.45)

D/2

Equation (3.4.44) becomes F(•, :) = -- j rd-[i - JO( )cos( R. (3.4.46)

If there are no other filter functions in the problem that depend on the angle in c-space, the

integral ove:" angle can be performed using Equation (3.4.5) to give for the normalized filter

function the expression

DO)

F (icX: -L-j r&[ - JO(H)J (3.4.]7

The integral over radius can be performed to give

M: :)=[ 2) ) (3.4,48)

For a point source over the center of the aperture with everything symmetric, the filter function

is

F(.) (3.4.49)

The effect caused by the difference in the paths between a focused and collimated beam is

referred to as focal anisoplanatism. A distributed source as shown in Figure 3-9 is now

considered in which the source points are incoherent with respect to each other. This case

would correspond to the physically interesting cases of a reflection from a corner-cube array or

a diffuse plate, or the return from a planet.
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Fig•arr 3-. Geometry of the distributed beacon so;--ce.

To determine the filter function, consider the effect of each point in the source on a

Hartmann sensor that measures the phase gradient or intensity. Each point gives a tilt or

intensity, and these are added together ;ncoherently, weighed by the source intensity.

Integrating over the source intensity, normalizing, and taking the absolute value squared gives

the variance at a point in the aperture. If the normalized result is subtracted from unity before

taking the absolute value squared, then one obtains the variance due to the difference between a

distributed source and a collimated beam. If these expressions are then aver.oed over the

aperture, one obtains the average phase variance filter function of a circular source offset from

boresight by 6'. For the distributed source S ( r) the filter function is

2
z) 4 4 sorc

W 2 n fir;, S( r-)(3.4.50)
source
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For a uniform circular source distribution of diameter D. that is on boresight, the integrations

can be carried out to give

F (I? , : ) 2- L2 7.: 2 , . (3 .425 1 )

For the isoplanatic case, the filter function for the difference between a collimated beam and

a distributed source is
. 2

Jdr" S( r")exp it. -7 -)] 2

F(-±. :- -d I. source d S (3.4.52)

source

If a uniform circular source distribution is assumed, the integrations can be cuired out to give

F~~' : =1-4J1 (Dv) 2 J1( Dsx) 1( :b rI D .x)13S~FPFf, :) = I - DOs Cos jý • +[2 Ds( 3,4,531

Dx DSX cos D I

where x= (3.4.54)
2H*

If there are no other filter functions in the problem that depend on the angle in K-space, the

integral over angle can be performed using Equation (3.4.5) to give the normalized filter

function

4J (Dx) 2J,(D'") -• ) [ Jx(Dsx)] 2

0D.- D+x Jo.... (.4.55)

If the offset is zero, the filter function is

4J,(Dx) 2J 3 (D x) r J,(Dsx)12
F(W, I=- Dx D x + [2 D x J (3.4.56)

3.4.5 Cascading Filter Functions

In the last section, the filter functions for Zernike components, anisoplanatism, and

distributed sources have been calculated. In some problems, several effects are present at
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once, and one would like to determine the quantities of interest for that case. Certainly it would

be convenient if the filter functions can be multiplied together. Unfortunately, this is not

always the case. The way to build up complicated filter functions is to use the approach in

calculating the spectrum of the Zemike components in Equations (3.4.15) to (3.4.16). In

deriving the spectrum of the turbulence with a Zemike mode extracted as simply the product of

the turbulence spectrum and the Zemike spectrum, one had to assume that the correlation

function of the turbulence had stationary increments. In a similar way, one can derive the

spectrum with anisoplanatic effects as the product of the turbulence spectrum and the

anisoplanatic filter function. The spectrum of isoplanatism for the effects considered also has

stationary increments. This new spectrum can be used as the basis to have the Zemike modes

extracted by simply multiplying by the Zemike spectrum. For this type of problem, the filter

functions can be simply cascaded.

After the Zernike mode is extracted, the spectrum may no longer have stationary

increments. Tilt removal does not affect the phase at the center of the aperture at all but it

greatly reduces the variance at the aperture edges. For this component, the residual spectrum is

no longer stationary. The problem arises if one wants to multiply this spectrum by another that

is also not stationary. Then the assumption that the Fourier transform of the covariance

function can be written as a delta fanction is no longer valid. A case of practical interest is to

find the phase variance for focal 3nisoplanatism and this is considered in Section 3.5.9.

To summarize, anisoplanatic effects, turbulence, distributed sources and piston related

effects can be calculated by cascading their filter functions. Also, anisoplanatic effects,

turbulence, and any Zernike effect can be calculated by cascading their filter functions. The

effects of distributed sources and Zemike modes cannot be calculated exactly simply by

cascading their filter functions.

The main filter functions that are used repeatedly in solving turbulence problems are listed

in Tables B, C, D, and E in part I.
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3.4.6 Fitting Error

In an adaptive-optics system, the mirror has a finite number of actuators that results in an

inability to correct for the high spatial frequency turbulence. This effect is referred to as fitting

error. It is not stationary, since a perfect correction can be made at the mirror piston positions

but an error is made in the intermediate mirror locations. Nevertheless, the effect of fitting

error can be calculated by using an appropriate filter function. The parameters of the filter

function can be chosen to give the fitting error variance obtained for various types of

deformable mirrors by Belsher. 15 This filter function can be combined with other filter

functions describing other defects in the adaptive-optics system to get an overall phase

variance.

3.5 SINGLE PARAMETER PROBLEMS

In this section, turbulence problems that can be represented in terms of one parameter are

treated. The calculation is very simple, beir.g comprised of an integration over angle, a change

of variables, and a table lookup. Some of the problems presented in these sections are much

more difficult to solve by conventional techniques.

Turbulence moments are used in the calculations. Analytic expressions for the turbulence

moments for the Hufnagel-Valley model are calculated in Appendix C. The definition of the

complete moment is

0 0

where 4 is the zenith angle. Define the upper and lower partial moments in the following way

for a distance L which is at a height H where

L = sec (4 )H as (3.5.2)

Pn(L)= JCn( Z)z dzsc7 1 Cn( h) h dh;, (3.5.3)
L /'
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and

L H

R(L)(L f C2(: ): "d: = sec" + ](4) f C2( h) h" dh. (3.5.4)
0 0

The :enith dependence for all problems only appears in the moments, and is incorporated in

them rather than being expressed explicitly. The coherence diameter and anisoplanatic angle

written in terms of moments are equal to

1:o5 / 3 =0. 423 k2
0 0 /o; (3.5.5)

and 513=o0. 91k 2
and 0 0 P5 /3. (3.5.6)

The values of the coherence diameter and isoplanatic angle for a wavelength of 0.5

micrometers are plotted versus the W parameter in Figure 3-10.

14 5.2

! 12 -5.0

101 4.8

8 4.6

61 4.4

4 4.2

2 4.0
10 20 30 40 50 60

WIND PARAMETER W

Figure 3-10. Coherence diameter and isoplanatic angle versus the Hufnagel-Valley wind parameter with

A = 1.7x 1014.
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Useful turbulence moments at zenith for various turbulence models are given in Table 3-1.

The values of the coherence diameter and anisoplanatic angle apply to a wavelength of 0.5 pm.

The moment at any zenith angle can be found by multiplying by the appropriate zenith

dependence given in Equation (3.5. 1).

TABLE 3-1

Turbulence Moments for Various Models

9.6CDAY SLCNIGHT HV-21 HV-54

ro (cM) 4.98 10.1 4.96 4.18

e0. (rad) 11.8 12.9 6.9 2.40

110 2.22 x 10 12 6.84 x 10"13 2.23 x 10"1 2.97 x 10-12

95/3 3.56 x 10"7 3.07 x 10"7 8.7 x 10"7 5.06 x 10"6

92 7.20 x 10-6  6.13 x 10-6 1.91 x 10-5  1.16 x 10-4

94 1.02 x 103 8.32 x 102 3.18 x 103 2.08 x 104

914/3 6.06 x 105 4.91 x 105 1.91 x 103 1.25 x 107
1010 -010 -10"-0

95/6 3.4 x 2.55 x 5.45 x10 2.24 x 109

3.5.1 Zernike-Tilt For Collimated And Focused Beams

First, consider the calculation of the Zermike tilt. In all the calculations of phase quantities,

it will be assumed unless stated otherwise that diffraction effects are not important, and the

approximation given in Equation (3.3.39) is valid. Using the filter function that is given in

Equation (B.7) in Table B and the general formula for variance given in Equation (A. 1) of
Table A, one gets

L 2( J2( / 2)
2 2 frz1

T2 =. 2073ko C(z f (K -- (3.5.7)
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Inner and outer scale effects are neglected in this section, and the turbulence spectrum is given

by the approximation in Equation (A.6). The integrand in the second integral does not depend

on the angle in kappa space nor on the axial coordinate. Integrating over this angle and over z

using the relation for turbulence moments given in Equation (3.5.1), and making the

substitution x = KD/2 yields

D 0 J 2V Y d /3 r[L3- s/+2,1 - s/2l

s---3!17

105.1/1"°0 3r 613

2V - r D-- I -- 29 17

(3.5.8)

The integral is equal to the Mellin transform of the function given in Equation (F.6) evaluated at

s = -11/3. The unusual notation for the Gamma function is defined in Equation (2.2.2) of

part 2 and is equal to the ratio of the four individual Gamma functions. The evaluation of the

Gamma function at noninteger values can be done on some hand calculators such as the

Hewlett-Packard-15 by calculating the factorial of one less thar 'he argument. The composite

Gamma function above is equal to 0.2052. Evaluating this expression, one obtains the

standard result

T2= 6. 08 o ( D) 5/3 (I) 2  (3_5!Tý D 1/3 -0. 3641 D• '• (3.5.9)

Notice that the tilt goes to infinity as the diameter goes to zero. This singularity is removed by

considering inner scale which is done in Section 3.6.5.

For a 0.6 meter diameter aperture and HV-21 turbulence, the rms tilt is 4 microradians. If

the turbulence is constant along the path of length L, then the tilt variance is

2 6.08C,,2DL (3.5.10)
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If the beam were focused at L, then the formula for focused waves in the bottom part of

Equation (A.4) has to be used. Close to the focus, the argument of the cosine term is

significant; however, the term multiplying it goes to zero at focus. Therefore, it is a good

approximation to neglect the cosine term in calculating the tilt. Doing that the tilt variance is
L /3T2_ 6.08D r d: C 2()(L'z)

/ D 3 o'' (..1

If~~~~~ ~~ th ublnei osataln h ah n ban
If the turbulence is constant along the path, one obtains

2 6.08CL 2 3

Zý D 13 8T (3.5.12)

Therefore, the tilt variance is 37.5% of the collimated value and the rms tilt is 61% of the

collimated value. The above results were derived by Tatarski and expressed in a different

form.

3.5.2 Gradient-Tilt

In an exactly analogous fashion, the G-tilt integral can be found by putting the filter

function given in Equation (C.4) into the general formula given in Equation (A. 1) to obtain

2 2
TG =0 . 2073k 0 d f d9I /2 (3.5.13)

After the same integrations, substitutions, and Mellin transforms as above, one obtains

"2 =6.564/ 0  1j A 5. 675 /Ao ( / 3 2
'I o 6'13 0 --) (3.5.14)D v/3 r- 1 6'G ' 3  Vi[2.....

This gives a tilt that is 3.5% lower than the Z-tilt. This is the same result obtained by

Ellerbroek. 16

3.5.3 Difference Between Gradient-Tilt and Zernike-Tilt

Sometimes the position of a target is measured with a sensor that responds essentially to the

G-tilt. The pointing syst.m uses the tilt from this sensor to direct a beam at a target. The

pointing of the telescope is the Zernike or Z-tilt. It is of interest to know what is the tilt jitter
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expected at the target even if this process is performed perfectly. This problem has been

analyzed by Yura and Travis 17 and they call it centroid anisoplanatism. The variance of the

difference between G-tih and Z-tilt can be found by taking the difference of their filter functions

for each realization, squaring the result, and then putting this into the standard formula to give

= CL,()2di• f2) 4 /2) -J1•2)

= 0.2073 kod: C,( f d f
0

(3.5.15)

If the bracket is expanded, one obtains three terms, two are the sum of the Zernike and

Gradient tilts. The third can be evaluated using the Mellin transforms in Equation (F.7) to

obtain

6.564 6 6' 3 61 3 81 3
.... =16 + I - 817 1. (3.5.16)Tý _ Z D 11 32 Nry-r 29 17 17 1237

L6' 6_ L6 6_ L"6""6.1

If the Gamma functions are evaluated directly, since the terms in brackets almost cancel out,

one requires five-place accuracy to achieve three-place accuracy in the final answer. Rather

than doing that, the recurrence relation of Gamma functions given in Equation (2.2.4) of part 2

can be used to show that
F 14

26.5 6 4p M 6'I
T _= - -'3 [11. 07138+ 1-2.05348]. (3.5.17)

This is equal to

2 0. 102 o D 5/3 ()2

TG Z 3 0. 005 6 r) (3.5.18)

The jitter will be one-third of a beamwidth when the aperture diameter is 6 times the

coherence diameter. A more capable proposed adaptive-optics system with a 0.6-m aperture

will be able to correct turbulence very we". even if the diameter is 17 times the coherence

length. If the turbulence were that severe, the Zernike minus Gradient tilt jitter would be equal

to 0.66 mictoradians; therefore, care must be taken to assure that the tracker responds to Z-dlt.
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This can be done for the wavefront sensor tracker by using the appropriate matrix to determine

the tilt from the individual gradients measured in each subaperture.

3.5.4 Scintillations for Collimated and Focused Beams

To calculate the scintillation of a wave that propagates from 0 to L, use the filter function

given in Equation (A.5) in the general formula in Equation (A. 1) to obtain
,v2=O . 2073k2 d • d '/3 sin 2[± 2 (- -L) (3.5.19)

0

Integrating over (p and making the substitution

x-2 L) (3.5.20)

one obtains
L cc

x2 0.731ko 'fdzC2,( )(L- z) 5 1 dxx-5/-1sin 2 (x 2). (3.5.21)
0 0

Using the Mellin transform in Equation (F.4) evaluated at s = -5/3, one obtains
L

X20=. 5631 k 7o/6 Jdz C2(z )(L - Z)5/6 (3522)

0

If the propagation were from L to 0 then L - z should be replaced by z, the standard result

is then obtained which is
2 7/6

X = 0. 5631 k 7 /6 (3.5.23)

This is the scintillation that one would get from a star. It is equal to 0.059 for the HV-21

model at 0.5 micrometer wavelength. Even though this number is small, there can be

significant scintillation on the beam. The variance of the log intensity is four times that of the

log amplitude and is equal to 0.236 Therefore, it is not too unusual to have the intensity drop

by a factor of 2.

A similar calculation can be performed for a focused source. The standard Equation (A. 1)

is used with the filter function of a focused source given in Equation (A.5), to obtain
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,X2 = 0. 2073 k,; fdJ C,2(: ) f di? W"-i /3S sin 2k S (3.5.24)
0

Integrate over the angle and let a = K' 2 ko(S - ) ' (3.5.25)

then using the Mellin transform in (F.4) evaluated at s = -5/3 one obtains
S

2 1S C2( ):5/6l S 511
=0.5631 k C(: )z 5/6( z / S)n/ (3.5.26)

0

The above results were obtained by Tatarski in a slightly different form. If the target is much

higher than the turbulence, the last term in parenthesis goes to unity and the scintillation then is

equal to that of a beam propagating from space to the ground. This is much less than the

scintillation of a collimated beam propagating from the earth's surface to space.

3.5.5 Beam Movement at a Target for a Collimated and Focused Beam

The next problem is another in which the complex filter function acting on the phase is

calculated. This complex filter function must be squared before substituting it into the general

expression. The movement of the beam due to turbulence at a target will be found. The tilt

causes a beam to change position on a target as shown in Figure 3-11.

TARGET BOARD

BEAM PATH

3 SOURCE

Figure 3-11. Movement jitter at a target board.
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It is assumed that the scintillations are small so that the beam does not brak up. If there are

significant scintillations then that will add to the movement calculated here. With that

assumption, the amount of jitter is equal to the tilt times the distance over which it acts.

Therefore, the tilt filter function for this problem is

F(, L- ) / 2 (3.5.27)

and the variance of the beam movement for the collimated case is
L 2'd J2()d fxD)L /"/ 1/2)i)2

X2=0.2073 ko 2 C2( JO f (c)(L - z)2( ,) J6 2(u/2 (3.5.28)
0

This expression can be evaluated as in the example for Z-tilt to give
dx /3=.j L 2 o- 2L p+p2]. (3.5.29)

For distances at which the target is well above the turbulence, the first term in brackets is

dominant, and the result is the physically reasonable one that the rms movement is the rms tilt

times the distance. If the turbulence is constant along the path then
3 22. 203L 3C,2

X = d / 3 L (3.5.30)

This functional dependence with constant turbulence along the path is the same as that reported

in Fante 18 where the fourth moment of the field was used to calculate the beam displacement.

The coefficient was 1.92 in that case. A Gaussian beam calculated by Prokhorov 19 gives the

same dependence with the coefficient equal to 1.6. The advantage of the approach here is

that the answer is arrived at in a straightforward manner and the expression given in

Equation (3.5.29) applies for turbulence that can vary in space. For the focused case, the

phase expression at the bottom of Equation (A.4) must be used. For the same reasons given in

Section 3.5.1, the cosine term is neglected to give for the movement variance the expression
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S60 Jd: C(:) /3 (3.5.31)
D1 0  Li'

For constant turbulence along the path this can be integrated to give

2 2.03L C"(

D= 1/3 1 " (3.5.32)

The movement variance is 64% that of a collimated beam, and the rms movement is 80% that

of a collimated beam.

3.5.6 Tracked Tilt

Suppose a tracking system is doing a perfect job of keeping a laser beam centered on a

target. There will stijl be an angle-of-arrival jitter of the laser beam at the target because the

beam had to traverse the atmosphere differently as the turbulence changed. This is illustrated in

Figure 3-12. The fact that the target is being perfectly tracked means that, at each turbulence

realization, the distance the beam moves due to the tilted tracking mirror is exactly canceled out

by the tilt caused by traversing the atmospheric turbulence. The angle of arrival tilt will be

calculated due to the turbulence at z. rn the'final expression, all these differential tilts are

summed by integrating through the atmosphere. Therefore, if To is the mirror tilt and T is the

filter function of tilt, one gets

LdTo, - (L - )dT = 0, (3.5.33)

therefore, dTo = (1 - / L)dT. (3.5.34)

The residual tilt at the target is the mirror tilt minus the tilt through the turbulence. This results

in the following tilt at the target

dT = dTT- dTof :dT/L(t (3-5.35)

The filter function for this problem is the square of the above complex filter futl -tion which is

Z J](T (3.5.36)
FL (, IT 12/
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END OF
TURBULENCE

Figure 3-12. Path o rays for a per*-tly tracked target.

Substituting this filter function into the general formula gives

2' L/3' 1\(6' J,( D / 2)1
"T= 0.2073k;Jd:C"(:)fd• ! 2 " (3.5.37)T 0. 03 n (-()Ed• k-1AD/3

0

Evaluating this in exactly the same way as the variance of Z-tilt gives
, 6. 08/p,

T D = /2 (3.5.38)

This problem was also analyzed by Tyler.20 His results are in the form of curves that are the

result of a numerical integration of the final form of his result.

For a 0.6-m system with the target at 300 km and HV-21 turbulence, the rms tilt is

39 nanoradians.

3.5.7 Scintillation on a Corrected Beam

A perfect adaptive-optics system applies the phase shift caused by the entire atmosphere to

a deformable mirror. A beam bounced off this mirror is severely distorted at first and as it

propagates, the phase distortion decreases to zero at the top of the turbulence. The distorted

beam will produce scintillations. The turbulence at a given altitude will cause scintillations as

analyzed above; however, in this case, there is a corresponding phase shift at the mirror that

tends to cancel out this scintillation. The two turbulent contributions do not act over the same
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distance, and there will be a net scintillation for each turbulence realization. This must be

squared to obtain the filter function which is

F(sin. s(iL A sin (3.5.39)

The scintillation is therefore equal to
2 2. 3 A -L 2

dO.2073(2 ) (: i - sin 2 k
0 0

=fddc( I). (3.5.40)
0

In the above expression, the order of integration was interchanged. Everything multiplying the

differential of kappa must be the transverse spatial spectral density. For Raman scattering, this

quantity is of interest since the interaction strongly depends on the spatial wavelengths of the

turbulence. This expression can be integrated numerically to get the spatial spectrum at any

altitude of interest. This has been done, and an example of the transverse spatial spectral

density plotted versus the spatial wavelength is illustrated in Figure 3-13.

The tilt variance can be found by integrating the spectrum. Using the trigonometric identity

S L ssin -C(L-: ]=-cos[ -cos I L ]- (3.5.41)

one can evaluate the integral using the Mellin transforms in Equations (FA4) and (F.3) to give

2 =O0.,563k 7/-fd:C ) L516 +(L - : _- : -5I62 :5/6

(3.5.42)
which for altitudes well above the highest turbulence is equal to

7/67.63 2 P6  0.0195 k76
76 /6 2 51/ 6 - 97.1 " + .. (3.5.43)
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Fiq 3-13. Sputial spectral densitY at 15 km.

The first term is a factor of 1. 12 higher than the variance of the beam propagating downward

through the atmosphere. The second term is small compared to the first, and it decreases with

distance. As a partial verification of the accuracy of the above results, note that if the

turbulence is entirely at the mirror so that the turbulence profile can be represented by a delta

function, then the scintillation is zero - a result that is required.

3.5.8 Phase Variance with Finite Servo Bandwidth

Greenwood has derived the phase variance of an adaptive-optics system having finite

temporal servo bandwidth with a one-pole filter and an infinitely sharp filter. The residual rms

phase error due to the finite frequency rmsponse will be calculated. In this section. the same

servo filter function as treated by Greenwood 21 will also be treated here. Consider the

following filter function

2

F(K)= I - n1(..4
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Greenwood's case of a single-pole filter corresponds to n -aI and n = a* is the sharp cutoff

case, If this is inserted into the Equation (A.3) for the power spectral density one obtains
S"• " 1 r53 c •2n-N/3 U (8' - ' 3

0- 0.8272 k -Jd: C,(: )---.J " . j Uc - (3.5.45)o 1. o + .x ,

where (3.5.46)

Using the Mellin transforms in Equations (F.8) and (F.9), one obtains for the phase variance

the relation

5/5 0.051 k(5f 0. - (3.5.47)
53 05/Sf3,8 n sin ( 6n

The velocity moment is defined by

L
It( )v 0( (3.5.48)

0

For a single pole filter n 1 !, and using Equation (3.5.41) the characteristic frequency is equal

to
j~/3 "

0, 102 k 5/Y (3.5.49)

While for a sharp cutoff filter, the limit of the phase variance as n gets very large is found

using L'Hospitals rule to be

0.0196 ko I5/Y (3.5.50)

"These are the same results obtained by Greenwood.

3.5.9 Focal Anisoplanatic Tilt

It is pointed out in Section 3.4.5 that the method of cascading filter functions works as long

as not more than one of the filter functions stems from an effect that depends on the radial

coordinate. For the problem of finding the focal anisopl-anatic tilt, this assumption is not valid.
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The phase variance that is subtracted due to tilt is zero in the aperture center and a maximum at

the aperture edge. In addition, the phase variance due to the difference between a collimated

and focused beam is zero in the center and a maximum at the edge. Because there are two

functions that vary radially, the problem must be solved by going back to the basic equations

and rederiving the expression for the phase variance. The expression that is derived is a two-

parameter integral; however, the high altitude beacon assumption reduces it to a single

parameter problem which is why it is included in this section.

From Equation (3.1.22) the differential disturbance to the wave is

d(,,:)= ik fdv( J?, :) exp 2•k0  dz'. (3.5.51)

The phase for a collimated beam in real space can be written as the inverse Fourier transform in

kappa space using the above relation as
dC( r', f)d9• dip(,( J?,-)exp [ ii• k ]'

=ik fdi? f dv( W, :') exp[ iR ,ex[ )ld:'. (3.5.52)

The focused beam phase is

dj ,) ik o f dk f dv( , :') exp [ii je '( - :'I L)]exp 2 k ]dz'.

(3.5.53)

Use was made of the fact that the separation of the rays at a radial position r in the aperture is

equal to r( I- I L) at a given distance from the source. This displacement can be represented

as a phase shift in transverse spatial transform space. The tilt of the wave at the origin

measured in an aperture of diameter D can be written as an operation on the phase that is the

imaginary part of the above turbulence induced disturbance as

T- 16 4 Wd[ r''l D(:)] ("drfdexp[ it? -']lm dp(W, L). (3.5.54)
kD o 2  Mr 2(z)
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This form allows the diameter to vary with propagation distance. If the change of variables

r ' / D(:) -+ i" / D is made, the above equation is transformed into a relation for the

focused beam

4y7 f d9 diexp [ • ie- (1-. L) ]Im d•)( ).z

(3.5.55)
The vector character of each of the expressions for tilt of the collimated and focused beams can

be incorporated into a gradient operation in kappa space, and this will allow the integrations to

be performed. Diffraction effects will be neglected, which is equivalent to setting the last

exponential in Equation (3.5.53) equal to unity. Doing that, the difference of the tilts can be

written as

L

T 6 f dz'Jde[Im dCp(e, ")]9VW( / D) d9
Tcf k- 

)4k 
0 0

(cos[ R' •"] -cos[ R. )(1 -- z'/ L)]). (3556)

The angular integration in the aperture can be performed by using Equation (3.4.5) with the

result

L D/2

T2 1-i --. kd f dv( je, :')d: 'fr V P ,'dr[ Jo( o') - JO( X[ l - :'/L])]. (3.5.57)
D 0

The radial integration can be performed using the Bessel function relation in Equation (3.4.3)

to give

L2 fd~ JI(OD/ 2) D J1[ 00 (- '/L) / 21D
Tc _f= i04, f, dv( k, : ')dz NVr 2s ' 1- ./L

T fD 4l 8 f 2t :')d ___ ___ - :'/ L ) ( . . 8

(3.5.58)

Performing the gradient operation using the recursion relation for Bessel functions expressed in

Equation (3.4.2) gives
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L fJ2(xD / 2)D 2 j,•[X(l. _ Z.1 L) /21D 2

T =i128fd OJ dv( k, 2 ')d][
c-f D o L -- 4 r (1- :'/ L)

(3.5.59)

To find the tilt variance, this expression must be multiplied by its complex conjugate and the

ensemble average taken. Follow exactly the same steps as in Equations (3.3.26) to (3.3.37) to

eliminate one integral over kappa prime and the axial coordinate. The result can be written in

the standard form of the variance given by
L

T =0. 2073 k2 C2) fdi f( ic)F( J, z• (3.5.60)
-f 0 0d n1 A0

The filter function for focal anisoplanatic tilt in the above expression can be found using the

results in Equation (3.4.2) to be

(16 )[2 J 2( xD/2) J2[ AD( - z/L)/2] 2

F(RZ) =• koD )" iFD/2 xD(1- z/L)/2 I (3.5.61)

If this filter function is expanded and the resulting expression evaluated by Mellin transform

techniques, one finds that the resulting expression is not convenient to evaluate when the

altitude is well above the turbulence. Of greater use in this situation is an approximation of the

filter function by a form that is appropriate for a high-altitude point source. Using the

recursion relation for Bessel functions given in Equation (3.4.2) one finds for small

arguments, z / L <<1, that

J,(x + A•) J2(.r + AX)

[=[x+.c + Ax]
Xx +l-

J,)(X) J.)( 0 d J.(.( .c1() J'() _'c_3__V[X,+ AxI -+ aAx - , +A, Ax

(3.5.62)

which allows the filter function to be approximated by

128



F(e, Z) 2L /2)- 2 / 2)12 (3.5.63)

If the above filter function is inserted into Equation (3.5.60), for the case when inner and outer

scale effects are not importart, one can immediately perform the angular and axial integrations

to give

T 2 105 P2dx x-51/3 1[JF( C) + ,C2j2( ,) -2 J2 (x,) J(x)],1/3 LD 3 (3.5.64)D0

where x = D / 2. The tilt variance can be found using the Mellin transforms in Equations

(F.6) and (F.7) and is equal to

T 2  5.68 /.)

- 2 L D I/3 "(3.5.65)

For an HV-21 turbulence model with the source at 300 km and a diameter of 0.6 m, the rms

jitter is 37.8 nrad.

The same method, as applied above, can be used to find the filter function that removes any

Zernike component of the wavefront. The filter function is the magnitude squared of the

difference between the compiex filter function for a collimated wave and a wave focused at the

observation point. These complex filter functions are given in Equation (3.4.19). For

instance, for piston removal the filter function is

( T2 JiD)/ 2) 2 J1[ D(l - /L)/2] 1
F( z) = -T/ -' • (3.5.66)

Relations for any other Zemike component can be found in a similar manner.
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3.6 MULTIPARAMETER PROBLEMS

In this section, turbulence problems that can be represented in terms of two or more

parameters are treated. These problems are all treated in the same fashion. Once again as in

the single parameter case, one starts with integrals over kappa space and over the axial

coordinate. The angle integral in kappa space is performed. A change of variables is made to

a'low one parameter to be, factored out of the integral. The integral over the magnitude of

kappa now contains one or more parameters. The terms may have to be rearranged so that the

integral can be written as the product of functions for which the Mellin transform is known.

This procedure has been successfully applied to all problems encountered to date. Then, the

Mellin convoltution theorem can be used to convert this into an integral in one or more complex

planes. Depending on the number of Gamma functions in the numerator and denominator and

the size of the parameter, a power ieries or an asymptotic solution is found. After the

integrations in the complex planes are p'-formed, the integration over the axial coordinates is

evaluated. This last integration can typitally be expressed in terms of moments of the

turbulence distribution. Analytic expressions for these moments are available if the Hufnagel-

Valley model of turbulence is used.

Several problems of interest are evaluated in this section to showcase this method. First the

:ilt with outer scale of turbulence is considered. It is found that the outer scale size can have a

significant effect on the tilt. Next, tilt anisoplanatism is considered. This is the difference in

tilts of two sources that are displaced from ea.:h other. For instance, this analysis can be used

tto determine the differential tilt jitter of two stars. Since outer scale significantly affected the

tilt, it is natural to ask if it also affects the tilt anisoplanatism. The general problem is set up in

Section 3.6.2, and the integral has three parameters. First, the simpler problem with the outer

scale set to infinity is solved. In addition to differential tilt due to two coincident apertures

pointing in different directions, the solution also applies to sources that are displaced in a

parallel direction with respect to each other. This error would apply if there were a

misregistration error between the wavefront sensor and the deformable mirror in an adaptive-
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optics system. It is shown that if this mispointing error is kept below a tenth of the

subaperture size, the tilt difference will be small.

Next, the tilt anisoplanatism problem with outer scale included is solved. It is found that

the outer scale is not nearly as important in affecting the tilt anisoplanatism as it was the tilt.

Then it will be shown that the inner scale limits the maximum tilt that can be measured by

an aperture. Next, the effect of the central obscuration and then diffraction on the Zemike tilt is

considered. Finally, several scintillation problems are considered.

For all problems the sign of the residue depends on which direction the path is closed. In

calculating the residue at a pole, sometimes the path of integration must be closed to the right

and sometimes to the left. One can easily show that the combination of path direction and sign

of s in the Gamma function always results in a positive sign on the residue for the bulk of the

poles. The single pole that may be separated by the path of integration has a negative sign

when calculating the residue.

3.6.1 Tilt with Finite Outer Scale

The significant effect of the outer scale on the tilt was first pointed out by D. Murphy.22

To set up this problem, the general expression given in Equation (A. 1) is used with the filter

function for Zernike tilt given in Equation (B.7). The turbulence spectrum that is given in

Equation (A.6) with the inner scale term neglected is used to give for the tilt variance with outer

scale present the expression

L -11/6 16 Y- ,2( iD/2)2
T,-=O.2073 k-d: C-(: )fd[K*2 + K] ( kD )L i)D/21 (3.6.1)

0

The integrations over angle and : can be performed. Making the substitution x = KD/2 gives

_0 -1 1/6
~, 1334 p, o___ f 1~

To D42 ( -D/ 2X lj 1 (3.6.2)

This can be converted into an integral in the complex plane by using the Mellin convolution

integral in Equation (1.6). Define
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HIx) M( ) (3.6.3)

and H,(a/ x) [(a/.r ) + 1 6. (3.6.4)

Use the Mellin transform in Equation (F.6) for the first function. For the second, start with the

relation in Equation (F.8) with p = 11/6 and then use Equation (1.5) with p = -2 to obtain the

first part of the following equation. After the substitution s -+ 2s, one obtains the second

part of the equation.

x =F- I" sf +-s /+ .6 c2]

= / 2d + Z,- - ss ZssZý + s 2365

k-11p -I/3 -2sl
4 00 u, OD ) z- 7 SS 6 (365

D4 21 2.-s +3,-s + 1

where the path of integration does not split any of the poles of an individual Gamma function.

The substitution s -+ 2s is often made to get most or all of the coefficients of s equal to

unity. The method used to evaluate this integral is discussed in Section 2.4. Since A = 2, the

!ath of integration can be closed in the left-half plane, and there are contributions at the poles at

s - -11/6 - n, and -2 - n for n = 0, 1. 2... . The resulting solution is

40/ w 1/3 1 - ( t/+ -LnI L-
2 40 - ,D -n, 6 t+

2 4 n 2 29 17D•= L" 'n +-D 1 6

( ~D2+2n ,+~f

2 n 5, + 3(3.6.6)

Using the definition of outer scale given in Equation (3.3.30), the most significant terms of

these summations are

2 6.08 ,40 ( _L ) 2  ( D /1 .4 2 + 4 ( -'.

D"l + 3. 7  + "o . + 0" (3.6.7)
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The tilt is affected by the outer scale and the fractional decrease from the value with infinite

outer scale is shown in Figure 3-14. If the outer scale size is 100 times the aperture diameter,

the tilt is still decreased by 15%. This occurs because the tilt is determined mainly by the high

wavelength turbulence. A finite outer scale decreases the turbulence at the long wavelengths

and, thereby, decreases the. tilt.
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Figure 3-14 Effect of'outer scale ow' the normali-ed tilt variance.

3.6.2 Setup of the General Problem for Tilt Anisoplanatism

To find the value of tilt anisoplanatism with finite outer scale, the integrand in the general

formula given in Equation (A. I) is composed of three factors: the Kolmogorov spectrum with

outer scai ' ,,..uded, the Zernike or Gradient tilt in the x and y direction, and the anisoplanatic

term. The effect of both displacement and angular anisoplanatism will be evaluated. The

angular anisoplanatism is important in adaptive-optics systems because the beacon may not be

in the correct position. The calculation also allows one to calculate the relative jitter of stars.

The displacement anisoplanatism calculation allows one to determine the effect of wavefront
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sensor and deformable mirror misalignment, and the jitter on a laser beam produced by the

tracking system and the laser beam using different parts of the aperture.

The sensor for the tilt may be sensitive to either the G or Z tilt. Here the Z-tilt is calculated

for the general case and the G-tilt is calculated for an angular offset with infinite outer scale.

Assume that the displacement is in the x direction. It will be found that the tilt depends on

whether the displacement is parallel to the displacement direction or perpendicular to it. For

that reason, both the x and y components and the total Z-tilt in physical space are found using

the filter functions in Equations (B.6) to (B.7). Substituting the filter functions for Z-tilt and

anisoplanatism given in Equation (D. I) into Equation (A. 1) and using the Kolmogorov

spectrum with the inner scale neglected, one obtains for the tilt-anisoplanatism variance the

expression

2 L [Cos 2(] ( (7) J

(_! j C2(: fdji2(,p 1  K'2 + K- 1/6~ 2k( )
arv- 0.16 _ f dx- sin()( 02+ )-" W2

x [I - costs& cos(q) 1] (3.6.8)

The angular integration can be performed using Equation (3.892) from Gradshteyn and

Ryzhik which is

fexp [ iftsin (x)] sin v( . dx = - r(v + 1) J0( P3); Re v > -- ' (3.6.9)

0

Using the trigonometric identity

cos 2(p)= - sin 2(q) (3.6.10)

to express the first integral in the form of Equation (3.6.9). and using the integral given in

Equation (3.4.5), one can perform the phi integration to obtain00x 2 1 + +)(Id
S667 dz C2(z) d'2+ 11/6 I/6L J2() (

I- JO( 9)

(3.6.11)
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For small values of d. the Bessel functions can be replaced by the first two terms of their

power series which are
(•)"

jo( 'd)ff 1- ---4- + ..

and
3

- - +... 1 (3.6.12)

If these expansions are substituted into the expressions for the tilt, one finds the tilt variance

parallel to the direction of the displacement is three times that of the perpendicular component

for small separations. Expanding the functions and integrating term by term cannot be done in

general. The expansion above can be performed. If additional terms are used, the integrals

often do not converge.

There are two integrals that, when evaluated, allow one to evaluate all three integrals in

kappa-space. These are

Pci dgr+ •r AD - - , (3.6.13)

0
2

and IT f1c d1(( K+ (-() ) - 1]. (3.6.14)
T 0 X

The previous integrals expressed in terms of these two are equal to

667 L T-/
0= [I5 T d1 C2(: 

(3.6.15)

IIT
These general expressions will be evaluated in Section 3.6.4. In the next section, the

expression will be evaluated with outer scale neglected.

135



3.6.3 Tilt Anisoplanatism with Infinite Outer Scale

If the outer scale is allowed to go to infinity, the integrals contain only two parameters, and

the standard Mellin convolution integral can be used to convert the integral into one in a single

complex plane.

Let t= dandx= 2d
D =(3.6.16)

"The integrals are then equal to

-4d'1 3 c 2 tx{IT} D 2 J01 t-/3" 2 't (3.6.17)

Using the Mellin transforms in Equations (F.5) and (F.6) and the relation in Equation (1.6) of

part 2 and the substitution s -+ 2s. the integrals can be transformed into

II 0. 0889 d' [ -L - ZS / 3 fds 2S2[s+fl
=d2" s- -s +2, s+L

IT D 2 2iti s +3 s+l 1
tr[-s + 17]J

(3.6.18)

where the asterisk means that the first pole of that term is on the other side of the path of

integration. The path of integration passes between the first and second poles because of the

presence of the term subtracted from the Bessel functions that cancels out the first term of the

power series expansion as explained in Equations (2.3.10) and (2.3.11). The path of

integration and pole location are the same for both integrals, and are shown in Figure 3-15.

PATH OF
94PLANE IGRATNON

X XX X X X X

sll/6-n -7/6 -1/6 SM 1116

x X sm2+n
ss-1/2-n x x

2 3
-W2 -1/2

Figure 3-15. Pole location and path of integration for tilt anisoplanatism.
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Since A = A' a 0, the direction of path closure is determined by the parameter in the

integral. The point in the atmosphere at which the character of the solution changes is when the

two beams do not overlap at all. For dID < I. the path of integration is closed to the left, and

one obtains the residues of the poles at s = -1/2 - n for n = 0, 1, 2,,. ., and s = 11/6 - n,

for n =1, 2, 3..... .For dWD > 1, the path is closed to the right, and one obtains the

residues of the poles at s = 2 + n for n = 0, 1, 2,.. ., and the single pole at s = 11/6. The

resultant value of the integral for small displacements, diD < 1, is

IT L Dd " + 1, -n + -6, -, I

M (_+2, n - 6 n+ 3.l0.
+ n! 7D n Lo 5 3__

3 + 2 -n +2

(3.6; 19)

For large displacement, dID > 1, the integrals are equal to
-11/3 '

=0.0889 d 6A) r 31]o5

S6, 5 I -n + (3.6.20)

n-= " Ln+g, n+5,n + 3 1

Substituting these results into Equation (3.6.15) and realizing that the displacement can vary

with the propagation distance, one finds that the tilt variances for small displacements when

&/D<!I are
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d

0v 29.6 j d: C_(:)

L 0

n()!2 t f + P + (~V { 7 2n,+ }
-n 2n++ L

71 Tr 0 3 .(3.6.21)

n n+ 0 ,- , 2 -+

For large displacements, diD > I, the tilt variances are

I d: C2.(: )6.08

• U D -ffil 2 n

_-1/3-2n [n+ _.+_ .

0 .- n+6, n+ 5. n+3 I
6' [(3.6.22)

There is a sign difference between the two terms because the residue at the isolated pole has a

negative sign associated with it as explained before. From the form of the solution, one can

immediately see that for very large displacements the first term in the last equation is the only

significant one. The tilt variance for each component is equal to the total tilt variance given in

Equation (3.5.9). This is what one would expect since two uncorrelated tilts are being

subtracted. For small displacements, the first term in the first sum in Equation (3.6.21) is the

only significant term, and one can readily see that the .. compnnent is three times the y

component of tilt variance as was found earlier.
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Consider the case where the two apertures are pointing in the same direction but one is

displaced from the other by a distance d. If the aperture displacement is small compared to the

aperture diameter, then Equation (3.6.21) applies. The : integration can be performed and

wiih the use of the recursion relation for Gamma functions the tilt can be written as

2I + 2,- .+ ""'
( I) P d "63 2n+I

+d) 2 it+ 14/ -

3 2 "' - (3.6.23)

The only significant term for small displacements is the first of the first summation. Using

only that term, the tilt variance can be written as"' .
I' 

.,= 67
a 3v-- M d )21 3 31.

The value of total rms tilt is

A 5/6
T =0. 8 "D . (3.6.25)

"The tilt in waves is given by
5/6

T(waves) = 0. 8(_o) (d-), (3.6.26)

The tilt noise in a subaperture of side s will now be found. In a typical adaptive-optics system

the subaperture size is equal to the expected coherence diameter. For this case, the tilt noise in

a subaperture is

T(waves) = 0.566 ( d.I-axisl (3.6.27)

This tilt is due to the low spatial wavelengths of turbulence and is essentially uncorrelated

between apertures. When the phase is reconstructed from the gradient measurements, the

factor that relates the tilt noise to the phase variance on the full aperture is called the error
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propagator. For typical reconstructors this factor is about unity. Therefore, to keep the phase

noise below 1/20 of a wave requires the registration error between the wavefront sensor and

the deformable mirror to be kept below 1/10 of the subaperture size.

In systems that propagate laser beams, the tracking system looks out of a certain part of the

main aperture, and the laser beam is propagated out of a different part of the aperture. The full

aperture is not used for each because of vignetting problems as the beam is tilted by fast

steering mirrors. This misregistration can cause a relative jitter on the laser beam if the tracked

signal is used to direct it. To get an idea of how large this effect is, consider the simplified

problem of two beams of the same diameter that are displaced with respect to each other. For

that case, Equation (3.6.25) applies. For a 0.6-m system Dir can be as large as 17, and for a0

3.5-m system Dir can be as large as 100. For these cases, in order to keep the jitter under

1/20 wave. the registration of the laser and tracking systems on the 0.6-m system has to be

better than 5 mm, and that on a 3.5-m system has to be better than 6.7 mm.

To find the anisoplanatism due to the two beams pointing in different directions, one must

replace d by the angular separation times the axial distance. The upper limit in the integrations

become

h = H " cos(4) = Dcos(4),' e (3.6.28)

The integral must now be broken into a lower term and an upper term. The total variance is the

sum of these two contribution. The altitude at which the solution changes character is at the

transition between having the two beams partially overlapped to that where there is no overlap.

Using the definitions of the partial moments given in Equations (3.5.3) and (3.5.4), one

obtains for the lower integration

429.6 ( - n f (H 2) r 12,,+ 1
D1/( n + 1)! D 2)9

02 D n= )n+ 1,-n + ,-n +.J I
(-I n 1i4/34.2n("C) )14/3 +2 nrt - n--Z,1 n-+--5 2 2n+ .

-- 0 n! -D, -n + L3 -n + I.j1

(3.6.29)



The upper contribution is

{D}-- j 6.08 t(e

H

0(-1) ~-/-n -1/3-2n n + n
-29.6 1 n! "D 2 L .

n=O -n + 6 5, n n

(3.6.30)

The total phase variance is

0 
(3.6.31)

L. H

The most significant terms for small angular displacements are

S-21 11{ }=D_ '2.67 Arl( (e){ } -3.68 A4-( He.)(.)5}

-7.7 5 H1
4 3  e~)( -!2)14/3{L }. 7 1 (36.2

Notice that the most significant term for small angles varies as the cube of the. secant of the

zenith angle from the relation in Equation (3.5.4), and the x-tilt variance is three times the y-tilt

variance as was found previously. The leading term gives a tilt that varies as the -7/6 power

of diameter. If a system operates at one-half the wavelength of another while keeping the

same dijfraction-limited beam size, then the tilt jitter due to this effect will be 2.25 times worse

ftnr small separation angles. The most significant terms for large angular displacements are

{ r} =. D-I[6.08 /+( He){l} - 4.04 /j_-/ 3( He)("L){08. }/+ 0 . ]"

(3.6.33)
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The first term is twice the tilt variance for one beam. This is the expected behavior for large

angles. Notice that the second term has the displacement angle to the 1/3 power causing it to

decrease very slowly as the separation angle gets larger. Therefoie, the asymptotic limit given

in the first term is not approached until the separation angle is very large.

The only difference in the calculation for G-tilt is that the tilt-filter function is different. For

that case, Equation (3.6.17) becomes
iT 16 0T-d• 8 t53[jo(t)_ I]t (-'{1 1 + { III }?(_ (3.6.34)

This can be transformed to give the equivalent of Equation (3.6.18) as

{5.}- -5.55 x 10-3d,/3 f ds (•e)s r[s r+ 1,,- + : 2 2 [-s{+

(3.6.35)

This can be integrated in the same manner as the previous case to give for the lower atmosphere

contribution to the tilt anisoplanatism the value

L
1.85n c (36c) (/3+ ,2n +

Dnn1O f+ 2, -n+3L,-

+ n r 10 -3

(3.6.36)

The upper atmosphere contribution is

YIH

S(-1) ~ ..+i_(He)( .- 113-2n n + L, n + . 2

n=o -n + L ,. n+3, n+2 1

(3.6.37)
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Plots for the G-tilt of the longitudinal, lateral, and total tilts for a 0.6-meter system for the

HV-21 turbulence model are given in Figure 3-16. The ratio of the lateral to longitudinal tilt is

given in Figure 3-17 for the same conditions.

1 APERTURE DIAMETER 0.6 m

V100 TOTAL

S600-LONGITUDINAL

400
F200-

400

0 5 10 15 20 25 30 35 40 45 50 55 60
ZENITH ANGLE (dog)

Figure 3-16. G-tilt anisoplanatismjfor 50-prad separation with HV-21 turbulence.
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A plot of the ratio of the longitudinal to lateral tilt is given in Figure 3-17.

1.50

1.48-

F APERTURE DIAMETER 0.6 m

ul1.40I

0 5 10 15 20 25 30 35 40 45 50 55 60

ZENITH ANGLE (dog)

Figure 3-17. G-tilt ratios for SO-jurad separation with HV-21 turbulence versus :enith angle.

A comparison of the G and Z-tilts for a 1.2-m system are given in Figure 3-18.

50

APERTURE DIAMETER 1.2 m

4001

o ~ G-TILT
C

F 200-

100-

0 10 20 30 40 so0 6 70 80 90 100

Figure 3-18. Comparison of the G- and Z-tilt anisoplanatism for a 1.2-rn system with SLCSAT day
turbulence.
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These results agree with those calculated by Ellerbroek and Roberts. 23

3.6.4 Outer Scale Effects on the Tilt Anisoplanatism

In this section, the outer scale will be included. Start from Equation (3.6.11).

Let id= t, x = "yd .and y 2d-i (3.6.38)
L 0 D

then Equations (3.6.13) and (3.6.14) are transformed into

{~} ;CtI X 11/362* (3.6.39). r D - ' t-l3 Jo(t) I] 7

Using the generalized Mellin transform relation given in Equation (1.7) with the Mellin

transforms used in the last section, plus that given in Equation (F.8), this can be converted into

an integral in 2 complex planes that isI-.045 11 /3  d-2,

T D 2 (2) 2  0

F s+ t- * '-t + 2,"1+ t, sL- s6J
1_3+ t,I+ t "

F[-s -t,+ .- J(3.6.40)

The two complex variables are s and t. Since A = A' = 0 for the t integration, the direction

of closure depends on the size of the parameter. Since A = 2 for the s integration, the path

should be closed in the left-half plane. As explained in part 2, the only contributions are those

at the simultaneous occurrence of poles in the s and t plane. The list of 2-poles are

Ii I II
(1 -- -M, I+ t=-n--ý s= m+-, =-a n - 1

II II

6 2 6 ' 2(2) -• - s -m, -t +2-n -- s = m + L, t-2,+n

(3) --1 - s =-m, s + t- - = n*---) s = m + L1, t =-n*- m ,

(4) s----m, -L+ t=-n --- s=-m, t=-fi- 1

(5) s=-m, -t +2=-n -- s=-m, t=2+ n,
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(6) s=-m, s+ t- H-=-n*-- s =-m, t=-n*+ m+-L.6 6'
(7) 1+ t s+ t -- = 7 +

2 ~6 3
(8) -t + 2 =-n, s + t' L1 = ,M *, M* 1,t=2+ (.41-6 -

The values of m and n are integers that vary between 0 and Co. The asterisk after a term

means that the variable varies between I and - on one side of the path of integration, and is

equal to 0 on the other.

To determine the direction of path closure, the above relations are used to find the power

law dependence of the variables for large values of m and n. The constant terms in the

exponent do not affect the direction of path closure, and are not displayed explicitly. If the

exponents have m and n terms in the same exponent, the terms must-be separated by defining

new variables. This statement is made clearer by performing this process for the eight sets of

two-poles to give

(3m 2 n

W )d)

-2 m 2n

-2m* *+ 2n 2m 2n(3) (•)md'n• 2

2m 2 n

(5) L (d

2 m 2n *-2m 2m 2 n*

2m*+2n -2n 2m* 2n

(8) (_,,)2 +2n (-4-) -2 n 2 "m1 (3.6.42)
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This process produces the parameters that are relevant to the problem. The new parameter

introduced above is the ratio of the diameter to the outer scale size. In this analysis, that ratio

and the ratio of the displacement to the outer scale size will be considered to be less than 1.

One could also solve the problem for these quantities greater than 1, and a different power

series would be obtained.

To determine which pole residues must be included, conditions on each of the two

parameters for each of the eight potential terms must be examined. Only those poles that

satisfy both sets of conditions are to be included. Since the first parameter, ,rdIL0 , is less than

1, the exponent for large values of m must be greater than 0. In the first three sets of 2-poles

above, this is not true and the path of integration is closed in the direction that does not include

those poles, thereby, these terms do not contribute to the value of the integral. The last five

terms have the proper sign of the exponent and contribute. In the last two terms, because of

the presence of the asterisk, the value of m goes from I to -o rather than from 0 to o

Examine the effect of the second parameter. For &ID < 1, the exponent has to be positive

for large values of n. Pole sets 4 and 6 satisfy this criteria. In pole set 6, the value of n goes

from I to -.* For dID> 1, one requires that the exponent is negative for large values of n.

The correct pole sets for this case are 5 for all n, and also 6 for n = 0. The last term comes

about because the path of integration split the poles so that one was on this side of path closure.

The third parameter, YrD/L 0, is less than 1, which requires positive values of the exponent for

large values of n. Pole set 8 satisfies this criteria for all n.

To recapitulate these arguments, the conditions are:

MI Pole sets 1, 2. 3, and 7 do not contribute.

(2) For &ID < 1, pole set 4 contributes for all n and m, and pole set 6

contributes for n > 0 and all m.

(3) For dID > 1, pole set 5 contributes for all n and m, and pole set 6

contributes for n = 0, and all m.

(4) Pole set 8 contributes for all n, and for m > 0.
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The value of the integral for small displacements, dID < 1, can then be expressed as

[ i O0.0945 d'""3  ( -- 1) l(+
2m +1

IT2 •D n! m. -")

xTj"I IO n+ m+-j-

+ i (! ,) '

m=O,

n-m+-,m- n+ .m+ 5

x r 2 ' 6 0

-rn +m+-2,n +m+- ,n+lJ1

m=i

×F~~~ M+'mn "en +| •LE0 3

n +5 ,n +3, m +

(3.6.43)

For large displacements, did > I, the integral is equal to

!r o•. m m  d ! ;![-. 6

{'i} -11/3d1 13 ( lf+(-2

L m=O

xr ,n+ml- + m;"-
+n,3+ n,m - n+1

(61 6II
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D 1)4 (-l)n+m 1d)2m+I/3 XD 2n

d n !O m!n =0

m=I

x[n+1,-+- n- n+n+2 0.5

ln+5,n +3, m+1I

(3.6.44)

If the outer scale goes to infinity, only the terms with m = 0 contribute, and these

expressions reduce to the ones in the last section in which the outer scale was neglected.

For no angular difference between the two beams and small displacements of the aperture,

diD < 1. the tilt variance can be written as[1. yo W~ 2mn d n+5

1/3av d n"- 0
M- n - I, n+, +M 2n+2m+17

xr 35 2 6

_ _ - n d M--m +n i3

"0(-l)n+m (:D )2m 2n+1/3 n 2n-+
I n! M! LO n + m + 29 - + m + ILn+ 21 1J

m--O

(a-1) nm-nm+1/3 -2n +n+ 2m
7 D rn! m! LL16

n=!O n +5, n +3, m+2

m=I
(3.6.45)

The most significant terms for small displacements are the n = I, m = 0, and the n = 1,

m = I terms of the second summation, which give

{~r} 2.6 k _, _ ")23[-}[ 20.6('.'fo) +...J (3.6.46)
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I
The first term is the same as that in Equation (3.6.24) in which outer scale was neglected. In

Section 3.6.1 when tilt with outer scale was considered, the outer scale had a significant effect

on the tilt because the leading term with the outer scale was to the inverse one-third power.

Here the effect is small if the outer scale size is significantly greater than the diameter because

the leading term is the inverse second power of the ratio. The physical reason this occurs is

that for small relative aperture displacements, the two beams see the same tilt from long

wavelength turbulence which cancels when the tilts are subtracted from each other.

Mathematically, this subtraction had the result of having the third summation start at m 1

rather than 0. The term that was eliminated has the one-third power law dependence on outer

scale.

For an angular displacement of the beam, the tilt anisoplanatism can be written for small

angles and low altitudes, ez/D > 1, as

-31. [ -) ~n+ 2m + 4  Hc) 2 m 2 n+ 14/3
d1/3 n! m! j)()

iD
-M-

m - n -"n+ ""+ 2n+2
-nK7n, nn +m++ -

00 (_) jn (Hc)( -•- 2m.. 2
+ 0

n=1

n - m+ -L, m- n +- m +-• 2
x r 29 17

-n + m +-l-n+ m+--6,+2) 1

n--0

m=O

_~,,)2m+13,n11(-l) y2-m ( Ht.H)

m=1
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I ir i "I

xn+1,-m- n- i,m+ n+2 2m+ 1n+5,n +3.m+2 I

(3.6.47)

At larger angles and higher altitudes, Oz/D > I, the tilt variance is equal to

i-n! L ~ 2m
-31.5

xr'I

+ n.,3 +n -+,

XD r 6 , 3: 62n 1 + IM= Lm+-R .•m+1-•,n+2 •

+ • -1)+m Mt 2,n1÷13 2 Rn

m=1

xrF +,-m-n- +4m+ n+2 2 2m+ I

n+5,n +3,m+2 I

(3.6.48)

For small angular displacements, the most significant terms with outer scale included are

the m = 0, n = I term and the m = I, n I I term of the second summation of Equation

(3.6.47) which give

{ 2 " /6 7 1(Hc.)()Z{3 • { 206(/3) + 3".]0 (3.6.49)

Here the outer scale has the same relative effect as that due to displacement anisoplanatism

in Equation (3.6.46).
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3.6.5 Tilt with Inner Scale

The expression for tilt given in Equation (3.5.9) goes to infinity when the diameter goes to

zero. This obviously is an incorrect physical limit, and to determine the tilt for very small

apertures the inner scale must be included. To find the tilt with inner scale, the turbulence

spectrum with inner scale must be used in Equation (3.5.7) to obtain

S1% 0  5' . 1I /36.0
SI / 3 J(.)eXp-(c a

where~ 1/3K /2

where a= iD/2. (3.6.51)

The Mellin transforms in Equations (F.6) and (F. 1) can be used in the convolution integral.

After the substitution s -+ 2s to get unity coefficients in the Gamma functions, one obtains

29.64 iO I S o1-S + a2-S
T.-= D1/3 21d fds 6 29 17 a-2 (3.6.52)

k--S + -- ,-S +÷6

Since A = I, the path of integration can be closed in the left-half plane. If the inner scale is

larger than the diameter, then the leading term is

2 6. 67A. +'_L. 1/3 + (3.6.53)

The tilt calculated with inner scale neglected equals that above when the diameter is twice

the inner scale size. If the inner scale size is I millimeter, the maximum tilt one could measure

would be 12 microradians with the HV-21 turbulence distribution.

3.6.6 Zernike Tilt on an Annular Aperture

Most telescopes have a central obscuration so that a detailed calculation should take into
account this annular geometry. Mostly the effect of the central obscuration is ignored because
it does not produce a significant difference from the results over the full aperture. In this

section, the effect of the central obscuration on the Zemike tilt will be calculated and shown to

produce a small change in the tilt from the unobscured aperture.
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The approach taken is the same that has been used. The expression for the phase variance

given in Equation (A. 1) is used in conjunction with the filter function for Zemike tilt on an

annular aperture given in Equation (B. 10). The tilt variance in this case is

2 L 16 j's2(icD / 2) 3J2( uPOD / 2)12

T 0 207k-fd: C2(: 16 ____T ~ ~ ~ ~ ~ ~ ~ / 0.273,, ,,7I~ *~~/2

(3.6.54)

The obscuration ratio, i. is equal to the ratio of the diameter of the central obscuration to the

full diameter. The angular and axial integrations can be performed, and if the term in brackets

is squared. the first term is just the Zernike tilt of a full aperture and the second term squared is

the same multiplied by a constant. Making the substitution x = cD/2, the tilt can then be

written as

S6,08po , 1 + p 3  21002f &f.X-. 1/3 ,(.3 )J,,(P.)]. (3.6.55)Ta=D 1/3l_ p4] 0 (36.5

Using the Mellin convolution theorem and the Mellin transform in Equation (F.5), and making

the substitution s -+ 2s, one obtains for the last integral

2-14/3 Js- -, +l 1
I- fd 2 (3.6.56)

Since A = A' = 0, and the obscuration ratio is always less than I. the patt, of integration is

closed in the right-half plane and the integral is equal to the residues at s = I + n, n = 0, 1. 2

The tilt variance is equal to

6 .08p,, 23/3 cc(-I)" 4+2)n ' 6 T
T I-J +1.36 P 1 (3.6.57)
D- n=o -L + ., n +

The first few terms of the solution which give an answer accurate to better than 1% for all
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obscuration ratios are

T - 6.08 y + 3 _ -2.196 + 0.2236 -0.02717 ¢-0.0004808 •10

Da II 2

(3.6.58)
The-curve of this function is shown in Fig-ire 3-19.
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0.96! .... • " '� .. ...

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

OBSCURATION RATIO

Figure 3-19. Normali:zd Zernike tilt for an annular aperture.

Notice that there is very little change in the measured tilt even for sizable central

obscurations. T1 is agrees with the conclusions of Greenwood. 24

3.6.7 Diffraction with Zernike Tilt

As the beam propagates, it eventually spreads due to diffraction and the tilt can be affected.

In this section, the effect of diffraction on the Zemike tilt is considered by using the standard

formula for phase variance given in Equation (A. I) with the tilt term given in Equation (B.7)

and the collimated term given in Equation (A.4). By not setting the cosine term equal to 1 as

j was clone in the past, diffraction effects can be calculated. Thl formula for the tilt is
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L 2÷[2 j2os
T 2 = 0.2073k d: Ckn(.:)fdk .-11/3( kD ) D/[ J( 22

000

(3.6.59)

Integrate over angle and let

x= D 2, (3.6.60)

kot= D 2(-)

and 2(L_ z) (3.6.61)

The integral becomes

L
T 2  D05, d: C2(:) fxx-, Il3j 2(x)[l -sin 2(x t)2]. (3.6.62)d 1/3, x2D 0 0

The first term is the Zernike tilt that was found previously. Using the Mellin convolution

theorem with the Meilin transforms given in Equations (F.6) and (F.4), and the usL .

substitution s -- 2s, one obtains
"2 6.08 juo 2"5L.•~( )Sd t2 s+ _L,-s + I ,-s / 2

17 L2 6.+8 2.159 2 6 3 s/2
T f= d:- C ( st-

d D1/3 A0 0~ Ls 29 17 1 211

(3.6.63)

Since A f 1, the path of integration should be closed in the left-half plane. Because t is large,

an asymptotic series is appropriate, and the simple poles in the right-half plan., that are located

ats =-7/3+n, n=0, 1,2..... andats=2n, n= 1,2,3,... ivesan asymptotic

series that is the sum of these terms plus the E(x) term. The case of tilt measured

exoatmospherically at ranges that are about the Fresnel distance is considered here. In that

case, the most significant term of the solution is retained. For the case where L >> : for

values of z for which the turbulence is significant, the tilt is

2 6.08 A 1-o0. (3..64
Td D 1/2
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The variance has been reduced by 50% at the Fresnel range, and the tilt is reduced by about

25%. This tilt reduction will more significantly affect the high temporal frequencies which are

typically caused by shorter spatial wavelengths.

3.6.8 Scintillation with Inner Scale

Scintillation of a space object as seen from the ground is. mainly due to high altitude

turbulence that results in a corrgation of the wavefront which causes rays to converge at some

places on the ground and to move away from other regions. Since the higher spatial frequency

turbulence components have a smaller distance to move before they affect the turbulence at that

wavelength, one suspects that the scintillation is largely due to turbulence at short wavelengths.

If this is so, then viscosity which limits the highest spatial frequencies may significantly affect

the scintillation. This cutoff in the turbulence spectrum is represented by the inner scale. In

this section, the inner scale will be considered to be constant with altitude in order to see if the

effect might be significant for reasonable values of the inner scale size. It is found that if the

inner scale size is less than a millimeter, inner scale effects do not affect the scintillation;

however, if the inner scale is a centimeter or greater the scintillation is greatly reduced.

Using the standard formula for scintillations given in Equation (A. 1) with the turbulence

spectrum given in Equation (A.6) with inner scale retained, one obtains

X- =0. 2073 k) f. C(: )f d ic-l/exp[. )C]sin 2.•J(..5
0

The wave is propagated from equal to 0 to :equal to L. For a wave propagated from

the ground to space Zis replaced with L - Z. Integrating this over the angle in kappa-space

and making the substitutionsI 2 k (3.6.66)

and x K 2 (3.6.67)
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one obtains
L 5/6 t L 2It2

1. 303 k f d: c(z )(r f--- sin -(exp[.(-L) (3.6.68)
0 

0)

The Mellin convolution integral is used to evaluate the last integral using the transforms in

Equations (F.4) and (F.5). If s is replaced by 2s in the integral, it is equal to

_ 5-L,- S

Sf8(2 ) ds .C (3.6.69)

Since A = 0, the direction of path closure is determined by the size of the parameter. Except at

very low altitudes (: < 4 m), the parameter is greater than unity. The contribution below this

low altitude will be neglected since it is insignificant in determining scintillation. There are

poles at s = 5/6, and s = n for n - 0, 1, 2 ... . Evaluating the residues at these poles gives

9"=-0. 162 k° 0 0dzn;( nZI6X I•l 2.1jrJ,' - 13.43•,.y• J1.
(3.6.70)

The first few terms of this solution are
5/6

- 7 / + n15 2 -
-=0.563ko 7'5/6f2.l75,./ k () 121.3

(3.6.71)

The first term is the formula for scintillation without outer scale effects that was obtained in

Section 3.5.4. The ratio of the second term to the first term is
5/6 5/6

Ratio =03.86 "M 6[A (3.6.72)

For a wavelength of 0.5 micrometers and the HV-21I turbulence model, this ratio is 0.02 8 for

an inner scale sie of 1 mm and 1.31 for inner scale size of 1 cm. Since the inner scale size is

typically in this size regime, it may affect the observed scintillation.
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3.6.9 Scintillation Anisoplanatism for Corrected Beams

The corrected beam in an adaptive-optics system can have scintillation due to several

causes. In Section 3.5.7 the scintillation on a perfectly corrected beam was considered. Here

the scintillation produced on a system that has an anisoplanatic error is considered.

For each realization, scintillation is produced by the effects of the distorted wavefront that

originates at the mirror. The phase disturbance at the mirror produced by a section of

turbulence at an altitude : propagates up to the turbulence section before the phase disturbance

is canceled. While it propagates over this distance, amplitude scintillations build up. In the

present analysis, the propagating beam has an additional phase offset due to the different paths

of the collimated beam and the focused beam through the turbulence. In transform space, this

offset produces a phase offset of one beam with respect to the other. It does not matter which

beam this offset is applied to since the filter function is the absolute value squared of the

complex filter function. The filter function for this effect is obtained by modifying the filter

function in Equation (3.5.39) by including the phase term to give

F(Z, ) = sin - exp i-2d

=sin _L ] I sin --- 2cos( R. sin _____,__n2 o2 ko 2 ko "

(3.6.73)

Use the standard expression in Equation (A. 1) for the amplitude variance with outer and inner

scale effects neglected which is

22-= 0. 2073 k 2 f d z C 2(Z ) f d i- F ( je, -) w¢-I I/ 3 .( . . 4

0

Use the same analysis as in Section 3.5.7 to evaluate the integral of the first two terms of the

filter function to obtain
L

X =0.563k)76 dzC2(z JL/6+(L - z)5/6] + (3.6.75)
0
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The last expression is due to the last term of the filter function which can be integrated over

angle and modified using the trigonometric identity for the product of sinusoids to obtain

L1 1.303 koJ dC Z)f dpci( 1  J()( 1M1)(COS~- 2 [ K 2( k )j (3.6.76)
0 0

Change variables so that

2K2-
- 2ko' (3.6.77)

in the first term, and

K,(2L- z)
2 ko (3.6.78)

in the second. Also let

2 d (3.6.79)

and

A 2L- z
2 d (3.6.80)

k0d

The expression then becomes
L

,7/6 f d2
I 0. 731k d Co(:

0
x 5/6 fLt-S/3jo os t2-(2t2_ :)5/6ft t-5/3j° o 2

10 0

(3.6.81)

Each of the last two integrals can be treated in the same manner using Equations (F.5) and

(F.3) in the Mellin convolution integral to give

I I V- ds(2x2)- r 12-±2-l

1 21T 17/6 Fd!1_2s/1 2 s]. (3.6.82)
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The only difference between the two original integrals is that the parameter is different in the

above integral. Since A = -1, the path of integration is closed in the right-half plane and there

are poles located at s = n, n =0, 1, 2,..... The value of the integral is

L

1 -0.1818 k716 dzC.(z )
0

00 () n/ 2---_ z -)
12 n! (1 2L• z "-(3.6.83)

n _2n/2,l1 n

If just the first term of the series is retained, the scintillation is the same as the one with no

anisoplanatism given in Equation (3.5.42).

If the beacon is a point source located at H, and one wants the scintillation at a distance r

off the axis, then the displacement between the collimated and focused ray is d = 4. For

beacon heights outside the atmosphere, the parameters in the solution are large and one has to

retain only the first two terms of the infinite series to get accurate results. The scintillation in

this case is
L

"0 7/6fdz C2(){L 5 1 6  z) 5 / 6 _21 ' 6 L(2L z) 55 6/ 16/6]}Z"=0. 563 ko f zC(J' + (L- 2-( -z) ., ]

0

k13 /6r2 L I/1
+0.492 H Jdz Cn(:) _ -

H- 0 (2L- 1/

(3.6.84)

For long ranges, the second term in brackets in the second integral is smaller than the first term

and the expression reduces to
13/ 6r

7/621/6 k 1  U1 1 /6
0.563 k 2 6 +0.492 H 2  (3.6.85)

For the HV-2 t model, if the beacon is a point source, the scoring beam is collimated, and the

target is at 300 km, then the last term is equal to 0.0008 at the outer radius of the beam located

at 0.3 m. This is insignificant compared to the first term which has a value of about 0.05.
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Therefore, the use of a point beacon does not increase the scintillation. The expression does

depend on the inverse square of the beacon height, and if the beacon were very low, one would

observe a significant increase in the scintillation.

3.6.10 Scintillation Anisoplanatism

Here, the, differential scintillation between two uncorrected beams that originate

exoatmospherically and are displaced from each other is calculated. This analysis is applicable

to the measured scintillation difference between the two components of a double star system.

To solve this problem, the filter function is formed from that for anisoplanatism multiplied by

the term that gives one the scintillation of a down-propagating wave which is

F(P, Z) = 2 sin2 1 - cos( i'. d)j . (3.6.86)

Inserting this into the standard formula and performing the angular integration gives

2G K2 3[ A-8/3o( A) lsin= -2.606 K dz C2(z ) •dK i [ _j] (3.6.87)
0

Let t - d, and x-= ----- ;• te

"=- 2.606 k fdz C(- )d 5  Jt- o 3 [J 0 (t) - 1]sin 2( . (3.6.88)
0 0

The last integral can be converted into one in the complex plane using the Mellin transforms in

Equations (F.4) and (F.5) to give

N= -- I as rL s (3.6.89)

Since A = 1, close the path of integration in the left-half plane and pick up the pole

contributions at s = 0, and 5/6 - n for n - 1, 2, 3 ..... Therefore, the scintillation can be
written as

2r • 2( ~5 /3
Z21..455 ko dz C2(z)d

0
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I5 0* k d n12 /301
-0. 1818 kof dz Cn( Z)d n! 2:FII

0 n=I 1,n/2+-L

(3.6.90)

For very large separations, the first pole on the other side of the path of integration that occurs

at s = 5/6 is the main contributor. Evaluating the residue at this pole, one obtains for large

path separations
x •2x0.563ko 71 "/6 (3.6.91)

This is twice the scintillation for a point source, and it is what is expected since the

scintillations from the two sources are uncorrelated for large path separations. For two paths

that are separated by a small angle, the first two terms of the general solution are retained to

give

" =0.5(-•o +12.1k 0 11,6 . (3.6.92)

The above expression, which only includes two terms of the series solution, is only valid

for angles considerably smaller than the isoplanatic angle. The scintillation increases rapidly

with angle and is substantial when the separation is equal to the isoplanatic angle. This is to be

contrasted with tilt anisoplanatism in which the tilt difference is very small compared to the tilt

from a single object even for angles many times the isoplanatic angle. The reason for this

difference in scale factors is that the tilt is caused by turbulence with long wavelengths and

there has to be a substantial difference in path separations to get a different effect from these

long wavelength disturbances. In contrast, the small wavelength disturbances contribute most

strongly-to scintillation effects and a smaller separation between paths produces significant

effects. One cannot use the relative scintillation difference between stars to get a direct

measurement of the turbulence distributions since, for reasonable star separations, several

terms of the series solution are needed to get the correct value of scintillation and each term

contains a different turbulence moment.
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3.7 PHASE VARIANCE FOR A POINT AND DISTRIBUTED SOURCE

In this section, the phase variance for point and distributed sources will be found. The

technique to find the variance is the same one that has been used on previous problems. The

filter function for a distributed, circular, uniform source on axis given in Equation (E.6) is

inserted in the formula for phase variance given in Equation (A. 1). It is assumed that one is

operating in the near field so that the cosine term can be replaced by 1. Doing the angle

integration one obtains

H [o 4J[
24 f d ( "~ Dz 2 J2 zDics

(3.7.1)

The subscript on the variance means that it refers to a distributed source. If the D subscript is

* missing, it means that a point source is being considered. Piston is present in the expression.

If one wants the phase variance with piston and/or tilt removed, then one has to subtract the

contribution to the phase variance due to these terms. The appropriate filter functions to do this

are discussed in Section 3.5.9. That calculation will not be given in this report

This equation is the starting point for the evaluation of the phase variance for all the cases

considered in this section. The problem will be solved in steps since the results of both a point

source and a distributed source are of interest for different situations.

3.7.1 Phase Variance for a Point-Source Beacon

The expression for the phase variance for a point source with piston and tilt present can be

found from Equation (3.7.1) by setting the source diameter equal to zero to obtain

H 22J ( Z
0 0. 2 [2Z2)fK KH-]/3 2H)a2 = 0. 8292 0J fdz C~(:. (3.7.2)

0 0 2

Let t =2H then

163



H 5/3-
a --5.21k' fdzc( C2 -1Z)fJdt t 8 /3 -1[ ji(t) -] (3.7.3)

0 0

The last integral converges as discussed in the section around Equations (2.3.10) and (2.3.11),

and its value is just the Mellin transform of the Bessel function given in Equation (F.5)

evaluated at s = -8/3 which is equal to 0.305. The phase variance is equal to
"1 2 3(D) 5/3 5/3

d2 = 0.5ko/L5 (/ (0.348D) . (3.7.4)

The value of the isoplanatic angle given in Equation (3.5.6) was inserted in the last expression.

The phase variance is due to the angular offset of the collimated and focused rays. The phase

variance varies- however, one can consider the average phase variance to be due to an angular

offset equal to that of the ray that emanates from the point that is about 0.7 of the radius from

the center. This angle is 0.348/H.

The above value of the phase variance with piston included is finite unlike the result for

unfiltered turbulence, which is infinite. The infinite result comes from the zero spatial

wavelength term. This infinity cancels out in the subtraction of the phase of the collimated

beam from that of a focused beam. Even though the above result is finite, it might be possible

that the major component of this variance is due to the piston, which is no practical interest. It

can be shown for satellite altitudes that the piston contribution is only 25% of the above

expression. Therefore, the above simple expression is a reasonable zero order approximation

to the phase variance. A 60-cm aperture looking at a point source at 300 km would have a

phase variance due to an angular offset of 0.7 microradians. For typical isoplanatic angles, this

will produce a very small variance.

3.7.2 Phase Variance for a Distributed Beacon

The expression for the phase variance for a distributed source with piston present can be

found from Equation (3.7.1). This integral has to be put in a form for which Mellin transforms

exist. To do this the integral is written as the sum of two integrals.
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Let t = 2"-•) Y = and r = D then
2H' 2H~l aDd( ° ) 5/3

a I. 1279 e(H (-I + J), (3.7.5)

where the first integral is

*t \tLIIX~j(. 2 2.v (3.7.5)
0

The J term is easily evaluated using Equation (F.6) to give

lDS )5/300 /312)1
= -D fY)-v-1-( -- 0. 133-1 )

o " (3.7.7)

The value of I depends on x, which is not a function of :. J is also not a function of z.

Therefore,. the final answer just has the 5/3 moments of turbulence, which has been expressed

as the isoplanatic angle in Equation (3.7.5). The form of the expression in the first integral is

not one we have encountered before. It is the product of two functions minus the product of

the first terms of their series expansion. If A and B are the two functions and a and b are

the first terms of the series expansions, then the following identity will express the integral in a

form that can be evaluated using the techniques that have been developed

AB - ab = (A - a)(B -- b) + a(B - b) + b(A - a). (3.7.8)

The original integral, 1, car, now be broken up into the sum of three separate integrals that

are equal to

00

=0. S (7'/3 " 2•[y - y _, (3.7.9)
0

1 20. 5 x-5 1 3 dy Y 8/3IE[J,(y).....+1 (3.71. 10)
021

and 13 0.5 jdy y-8/3-1 2j(y)_ " (3.7.11)
0
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The integrands in the last two expressions are the same, and their value is equal to the

Mellin transform of the Bessel function evaluated at s = -8/3. The value of these integrpals is
5/3

- V and 13 0. 1525. (3.7.12)

Use the convolution theorem to evaluate the first integral. Using Equation (F.5) and letting

s -+ 2s. the first integral can be transformed into the following integral in the complex plane
"• 22, .4,JdSl

2-!t/3 1 Ds • rs ,-+

21- -S +Jdl F0 + ' (3.7.13)

where the asterisk indicates that the path of integration passes between the first and second

poles of the Gamma function. The subtraction of the first term of the series expansion of each

function has moved the path to the other side of the first pole for both Gamma functions in the

numerator.

Since A = A' = 0, the path of integration is closed to the right when the source diameter is

less than the aperture diameter, and it is closed to the left for the opposite case. For D)/D < 1,

the contribution' at the poles at s = 4/3 and s = 1/2 + n for n 1 1, 2, .... and the contribution

of the other integrals gives

•, 0.348 D )5/3

K + 0.258r - 0.873--] - • (3.7.14)n= I-n + 1L7 , n +2

The first few terms of this solution are

0 (0348 D
rD 4e,, H)

5113 2 L

[1 0.872 +0.763(-2-) -0.0177(- ý--0.000286(

(3.7.15)
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When DA/D > I, the contribution at thei poles at s = 1/2 and s = 4/3 - n for index

values n - 1, 2 .... and the other integrals gives

- 0.128 +0.258 Z Ln! r' -n+ -n+2J " (3.7.16)

Rail

The first few terms of this solution are
).( 0. 348 Dl13[.12 076 ( D2 ( 4 D 6

S.6oHD 0128 +0.763(" -01077( D -- 0.000286 (D .

(3.7.17)

The normalized variance is plotted in Figure 3-20. The phase variance actually decreases as

the source size increases initially and then it starts to increase.
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Figure. 3-20. Effect of beacon diameter on the normali:ed phase variance with piston and tilt present.
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3.8 POWER SPECTRAL DENSITY

In this section, the power spectral densities for several problems of interest are derived.

Many problems can be treated in a similar manner. For instance, in the first problem the beam

movement at a target and the tilt spectra are derived from the same integration. Power and

asymptotic series are found and shown to give a good match at the stitching point of these two

solutions. Spectral analysis of turbulence induced tilt has been investigated for both plane and

spherical wave cases. This section, however, concentrates cn. plane wave results. Plane wave

results are discussed briefly in Tatarski25 and presented in more detail in Greenwood and

Fried. 26 Greenwood and Fried made a simplifying assumption in order to obtain simple,

analytic results. Fields27 has coifed the term "parallel approximation" for this simplification.

One consequence of the parallel approximation is that the rate at which the spectra decay at high

frequencies is underestimated. Tyler 28 subsequentl3 analyzed plane wave tilt spectra without

V making this approximation. However, his results remain in integral form, containing an

integral over a dummy variable related to spatial frequency and an integral over altitude. In a

subsequent report, Vaughn 29 provided numerical techniques to solve the integrals presented by

Tyler, but no solutions have been published which do not rely heavily on numerical

integration. A similar approach has been used in tilt spectra associated with a point source

(spherical wave analysis). These analysis lead to integral expressions which must also be

evaluated numerically (Hogve and Butts30 and Butts3 I).

3.8.1 Power Spectral Density of Beam Movement and Tilt

The power spectral den!;ity of the beam movement at, a target is found using the general

expression for the power spectral density for a collimated wave given in Equations (A.3) and

(A.4) with the filter function of beam movement given in Equation (3.5.26). It is assumed that

one is in the near field so that the cosine term can be replaced by unity. This assumption

breaks down at sufficiently high frequencies and the exact equation must be used. The effect

of including the cosine term is to lower the high-frequency spectrum. The spectral density is
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F(w')= 1. 303 k 2c Ld z ) Tcdc U(c -1) (0 )I/3
02

X ( 6 \I[J,(oxD / 2v( 
))+(

XkoD)L ocD/2v(z) (3.8.1)

The expression for the spectra of tilt is just the expression above with the last bracketed term

2v (z)
eliminated. Let x = a)D = (3.8.2)

then

1334 L 2 d U(c -1)
F(-o) f , d: C(_ )VI13( :)[L - 2L + :21 f d_-- U -1),3.

D o) 0 0

(3.8.3)

The last integral is the same for the problem of calculating the spectra of the beam movement or

tilt. To evaluate the integral over c, define the functions
1( x j2( , (3.8.4)

(J c -1) -1l1/3,
and HI2(c) = / (3.8.5)

then the last integral over c can be expressed as a Meilmn convolution integral using the

transforms in Equations (F.6) and (F. 10). If s is changed to -2s, one obtains

1 d ri + (3.8.6)
2(2) -s + I,-s + 3, s + . -2v

Since A = 2, the path of integration is closed in the left-half plane and the contributions at the

two sets of poles at s =-2 - n ard s =-7/3 - n for n =0. 1. 2.. ... give

n(-" ["+ _ n+ ,-4+2n

n~o •f + 3,n,-+-5,-n + 2v )

+ rJ(21?2•') al (3.8.7)

n ., n + 3-n +5,-n16
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To obtain the spectral density, the velocity profile must be inserted into the above series, and

the integrations along the path performed. The final result is a series solution for the power

spectral density.

For large frequencies, an asymptotic series can be found by closing the path of integration

in the right-half plane and getting the pole contributions at s = 1/2 + n for n =0, 1, 2,.

The E(x) term is significant in this case and the asymptotic series is

21= ~A{ 32V Cos [( -D ]
n-) + 1 n 1-7 1,~ +2n1

+2 2v 3/2
I n+10 o I -n +5 w (3.8.8)
n-0 +T, + +

Notice, that in order to evaluate the coefficients of the series representation of the power

spectral density, various velocity moments have to be calculated in Equation (3.8.3). If the

total velocity and turbulence are constant along the path of integration, the power spectral

density for low frequencies is equal to

0.09256 C2 L3D2/3  x2/ 0.3398 (-.42/3 2

81/3 4 14/3
+0.005077(-•- + 1.329x 10_4(- M-) -5.7x 10 ("i-)

O 6 20/3)

-1.157 x 1O- 6) 4.4 X 10-7("-%) }0 .

(3.8.9)

For high frequencies

18.08C IL 3D 2/3 17/3

x {1 + 6.375( -D) +29.61(-- )+ 2.278(-v-) cos -

(3.8.10)
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The term [L2 - 2 - :2] contributes a factor of L3/3. To find the tilt spectra, the analysis

is the same except that this factor is not present. Therefore, the tilt spectra is the above spectra

multiplied by 3/L 3 . The spectrum for low frequencies is
0.2776 C;D 2/ )2/3[1 "0.01042

F,(o.8 El• ,-0.3398(0D) 2 0o0 (-)÷o1 0000(10' o-( )c °''
8/ 13 44 14/3

+0.005077 + 1.329 x -5.7 x x

-!17xO-6(-, )6 20/ 3]
-1. 157 x 10 +4.4 x 07

(3.8.11)

For high frequencies it is

54.24C W 2/3 17/3

Fta)V OD~
x[{I + 6.375(v )2 + 29.6,(v)4 + 2.278- v 'cos;

(3.8.12)

Notice that the first term of the expansion for low frequencies does not depend on diameter,

and the first term of the asymptotic series has the strong dependence to the inverse fifth power

of diameter. Therefore, as the diameter gets smaller, the high frequency components of beam

motion increase rapidly. For low frequencies, the spectrum decreases as the inverse 2/3 power

of frequency. For very high frequencies, the power decreases as the inverse 17/3 power of

frequency.

At high frequencies, there is a ripple in the spectrum due to the cosine term in the

asymptotic expansion. This ripple appears because of the assumption that the velocity was a

constant. If the velocity varies with height, then at any frequency one obtains the sum of many

cosine terms with different arguments. These terms tend to cancel out, and in that case one can

neglect the cosine term.
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The spectral density is plotted on a linear and logarithmic frequency scale in Figures 3-21 a

and 3-21 b. Notice the ripple at higher frequencies due to the cosine term in the asymptotic

series. Each plot contains the series solution and the asymptotic solution. As the spectral

density gets smaller, in order to obtain valid answers with the series solution, one must be

concerned with the numerical accuracy of each of the terms of the series since it is the

cancellation of large terms that produces the resultant small spectral value. There is a good

match of the curves using the eight terms of the power series and four terms of the asymptotic

series.

100

S16' 
1 LOW -FREQUENCY SERIES

1ar

I ar

HIGH-FREQUENCY ASYMPTOTIC SERIES

0 2 4 6 8 10 12 14 16 18 20

OMEGA*DIAMETER / VELOCITY

Figure 3-21a. Log-linear plot of the power spectral density of tilt using power and asymptotic series. The
velocity and turbulence are constant along the path.
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Figure 3-21b. Log-log plot of the power spectral density of tilt using power and asymptotic series. The
velocity and turbulence are constant along the path.

The two series are merging together in Figures 3-22a and 3-22b.
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Figure 3-22a. Log-linear plot of the power spectral density of tilt with merging of the power and asymptotic
series. The velocity and turbulence are constant along the path.
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Figure 3-22b. Log-log plot of the power spectral density of tilt with merging of the power and asymptotic
series. The velocity and turbulence are constant along the path.

If the velocity is allowed to vary along the path, then one must obtain the velocity moments

in order to determine the spectra. Define the velocity moments as

L H
v=•d C2-(z )vn(z): sec(4) Jdh C'( h)vn(h). (3.8.13)

0 0

The velocity in this expression is the magnitude of the velocity that is equal to the vector sum of

the wind velocity and slew velocity at any altitude. The last relation assumes that both the

turbulence and the wind velocity vary only with height. Using this relation, the tilt spectra can

be written as

0.2776 [ - 0.3398(0o)D)) v -2.01042( e)) /

-1/3 - 4 -7/3

+ 0. 005077 ( wD) 8/3V3 + 1.329 x 10 -4(oD) 4v -5.7 x 10 -5(oWD)-134/3

.157x 10 6 (/3 + 4.4 x 10-7(O D) 20/3v-7].

(3.8.14)
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For high frequencies with the cosine term neglected, one obtains

F,() 54.24 [V + 6.375v 2  oD) -+ 29.6 Iv O )(8
/3 5  143(3.8.15)

The velocity moments that are needed in the above series have to be calculated using the

wind velocity and slew rates for the particular situation. For the slew dominated case, these

moments can be expressed in terms of the turbulence moments that were previously found in

an analytic form. The general case requires a numerical evaluation of these moments.

3.9 STREHL RATIO AND COHERENCE DIAMETER

3.9.1 Strehl Ratio of Uncorrected Turbulence

The problem of finding the Strehl ratio with uncorrected turbulence was analyzed by

Fried. 32 He solved the problem by performing a numerical integration. He also analyzed the

problem of tilt removed Strehl ratios. Because of the problem of the Zernike modes not being

statistically independent, he hadl to make certain approximations to get physically meaningful

results. This tilt removed problem has been looked at by Lutomirski, et al.,33 Travis and

Yura,34 Wang and Marky, 35 and Wang.36 , 37

One can obtain an exact series solutic-n for the Strehl ratio when the turbulence is

uncorrected. This technique can be used to find an equivalent coherence diameter for more

complicated cases, however, a different method will be developed to find the Strehl ratio.

Since turbulence is isotropic, the Strehl ratio is given by Equation (3.2.14) as

SR f -a da•K(a)exp[- D(x)/ 2], S(3.9.1)
0

Since
D(c)= D (a)+ D (a) ,(392

the total structure function is found from Equation (A.2) with unity filter function and inner and

outer scale neglected so that j( ic) = K- 11/3 as

(, )=0.4146ko2dz C idl [cosle dj]. (3.9.3)
0
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The angular and axial integrations can be performed to give
@0

O(a) 2..605 M,,oko, f di -5/ -1[ 1- j( ICO)]

0
-2.605 /..ok 0,(aD)51 M(l- Jo(x))I (3.9.4)

s= -5/3

The Mellin transform of the term in parenthesis is just the Mellin transform of the Bessel

function given in Equation (F.5) as explained in Equations (2.3.10) and (2.3.11). Using the

definition of the coherence diameter given in Equation (3.5.5), the structure function can be

written as

5/3
D(a)= 6.88(aD / ro) (3.9.5)

The integral for the Strehl ratio has been reduced to
44 (g) ]

SR f a da K(a)exp ~3.4(-) r . (3.9.6)1- 0
0

To evaluate this integral, it is convenient to express the exponential as a Mellin-Barnes

integral. Marichev (Equation 5.31) expresses the exponential in terms of a confluent Gauss

hypergeometric function as

exp(-)- limr F(1, u; 1; z / u).
S-(3.9.7)

The hypergeometric function can be written as a Mellin-Barnes integral (Gradshteyn and

Ryzhik Equation (9.113)) in the following way

r(c) (a + s)F(b + s)l"( - s) (3.9.8)
F(a, b; c z)= r(a)r(b) -`-fds(-z s r(c + s)

The path of integration has all the poles of a Gamma function on one side of the path of

integration. Therefore, the exponential can be written as

,exp (z) filim 1 - fds F(u + s)F(-s )( --z )s, (3.9.9)
u -21i F(u)

where the path of integration is just to the left of the imaginary axis. For this case A = A' --0,

and the parameter in the integral is very small. Therefore, the path of integration can be closed
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in the right-half plane with poles at s = n, and using the following limit
F(u + s)

lim - (u) (3.9.10)

the normal power series for the exponential is the result

exp(:)= 0 n!. (3.9.11)

Using the Mellin-Barnes expression for the exponential in the equation for the Strehl ratio

produces

SR = lin d__ K(a)f ds r(u + s)r(_s)r_(Q_ _o a s/3 +-. (3.9.12)
U 1U) 21dj u r 0 }

Interchanging the order of integratiii yields

SR= ira rds "(u+ s) 3.d a +5s3 /3
'2 I'u) r(-s)d + Sr

0

( S= lira f j'ds l"(u + s (344 0(5..13
U -) (-) u "-6)5 -1 (5s/3). (3.9.13)

The definition in Equation (2.3.12) was used above. Take the limit, and use the value of the

integration of a power of the aperture times the MTF of a circular aperture given in Equation

(2.3.15). This expression for the integral is valid as long as Re s > -9/5 which is satisfied for

the path of integration. Change s to -s to put it in the standard form, and obtain

S, 5s / -)5/ 3 1]s

SR = ][s24 2 s -5 / (3.9.14)

L s/l6,-s + 61' J

For this case A = I, and the integral can be closed in the right-plane. These poles are

located at s = n, n = 0, I, 2, .... The power series for the Strehl ratio that is the sum of

the residues at the enclosed poles is equal to

n , n + [34(_) 3n
2 (-l)~ FI ~+5n,/6,,+~ II ,D /"

SR- 5v 4 r [32 5L 53]f J (3.9.15)
i=0 +5n/6,_ 6]
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The first few terms of this series are
5/3 ~ 10/35

SR =1I- 1~'. 032( +0. 7082(D -0. 5015 (D) . (3.9.16)

For large values of the parameter, this series converges slowly and an asymptotic series is

needed to get a rapidly converging series. Since Condition I given as Equation (H.20) is true,

the asymptotic series is equal to the residue of the poles on the other side of the integration

path. The poles are at s = -5/6, and s = -6n/5 - 9/5 for n = 0, 1, 2 ..... .(Remember to

multiply the second set of residues by 5/6 because the coefficient of s in the Gamma function

is not unity.) The Gamma function that produces the first pole only has a single pole because

the others are canceled out by the denominator. The asymptotic series is

SR -- ') 4 (-I3)n49/ n /5 +9 , + 3. 3 5)-2(3 .DO
Nf ir n=O ?kni

(3.9.17)

The first few terms of this series are
"0) fr3 i o• 061 o•

S () -0.6159(0.-0) +0.0 )(0. '1 ) + ... (3.9.18)

In Figure 3-23 is a plot of the Strehl ratio versus the ratio of the aperture diameter to the

coherence diameter. The regular series and the asymptotic series meet with a difference of I%

by using ten terms of the power series and six terms of the asymptotic series.

In order to find the Strehl ratio with tilt removed, one would have to remove the tilt from

the structure function. As was pointed out in Section 3.2, since the Zemike modes are not

statistically independent, subtracting the tilt from the structure function results in an error.

Since this error is not very large one can still use it to get an approximate expression. If this is

done and a power series solution is obtained, one finds that the power and asymptotic series

converge poorly in the transition region when the diameter is about the coherence diameter.

Away from this region, the solution is close to that with the tilt present. For that reason the

solution using this method is not presented here.
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Figure 3-23. Strehl ratio for uncorrected turbulence.

3.9.2 Coherence Diameter with Inner Scale

There are several ways to define the coherence diameter. The definition that is used here is

a physically intuitive one and is that value of r which divided by the aperture diameter and then

squared gives the normalized intensity in the far field. This definition is consistent with Fried's

definition of coherence diameter for zero inner-scale size. The coherence diameter will be

evaluated by first finding the structure function, inserting this into the expression for the Strehl

ratio, and then taking the limit as the aperture gets very large. The structure constant with

inner-scale size included is obtained by using Equations (A.2) and (A.6) to obtain after

integrating over angle

D( r) = 2. 606 k2 Jdz C2(:) f dic PC81 N / 3[l)Jx~(~~ (3.9.19)
0 0

The last integral in kappa space can be expressed as the following Mellin integral

/ 3

-28/32 -d2 rs -F. "(3.9.20)
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Since A a 1, the integral should be closed left; however, since the parameter in the integral is

large. the asymptotic series is desired. In this case, the asymptotic series is just the

contribution of the poles to the right of the path of integration. Retaining the contribution only

at the first two poles at s = 0 and 5/6, and using the definition of inner-scale size given after

Equation (3.3.30) one obtains for the structure function

[ (L N5
D(r)-2.-91k ,r5 3 1 -0.095 y--) j, (3.9.21)

which can be written as

D(a 6-88 , 3 0. 095 L51' 3].

The Strehl ratio which is the normalized intensity on axis can be found by inserting this

structure function into Equation (3.2.14) and then using Equation (3.9.9) to obtain

SR lim Jda rX)2 Jdsrxm+ S m-sts 3.44D(o.)- 95L51

0

(3.9.23)

The second term in brackets is small compared to the first term except close to the origin which

is a region that contributes very little to the value of the integration. and that expression can be

approximated by the first two terms of the binomial expansion. After interchanging the order

of integration and evaluating the aperture integration using Equation (2.3.15), the expression

becomes

SR = D,
4 r(-s)r[15s /I6 + -fr[s + I]r(D S3

5/3

(3.9.24)
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The asymptotic value of this integral is found by evaluating the residue at the first pole to the

left of the path of integration that occurs at s = -1/5, to obtain

2r[l ( L )5/]
SR =+ 0.6J( (3.9.25)

Therefore, the coherence diameter with inner scale included is

)1/3ro(L r !+0. . (3.9.26)

For the inner-scale size to increase the coherence diameter by less than 1%, it must be less than

13% of the size of the coherence diameter.

3.9.3 Strehl Ratio with Anisoplanatism

As we saw in deriving the filter functions for anisoplanatism, the effect of displacement,

angular mispointing, time delay, and two beacon colors can be treated as an anisoplanatic

effect. In fact, if all the effects are present simultaneously, they can be added together to get a

total displacement. In this section, the effect of that displacement on the Strehl ratio will be

determined. To find the Strehl ratio, the structure function must first be determined. Use the

expression for the structure function in Equation (A.2) with the anisoplanatic filter function

given in Equation (D. 1) to get

D a . 16k fzCn( )i W- 11 - cos, I W • - 1D12 [1 - cos{ I ae- (:) ,

0
(3.9.27)

The use of this formula assumes that the structure function can be written as a function solely

of the difference of the aperture coordinates. Therefore this formulation does not apply to focal

anisoplanatism whose phase variance was derived in Section 3.7. Since that effect is small, the

Mardchal formula can be used to find the Strehl ratio in that case. The expression in the last

integral is proportional to the spatial power spectral density. In Figure 3-24 is plotted this

density for pure turbulence and turbulence filtered by the aperture function. In these plots,

there is no isoplanatic offset. The aperture reduced the low spatial frequency components.
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The effect of anisoplanatism on the spectrum is plotted in Figure 3-25. One sees that for

very little anisoplanatism there is very little power, and it is fairly independent -f spatial

frequency.

The expression in the last integral can be expanded and the trigonometric identity for the

product of cosines used to get

I=2fd9I-"!3[l- cosIkW.cC D -cos( k d(z)l

+cosIJ.[CD+I+ (S)]}/2+cos{1.[OD-d"(:)]/21. (3.9.28)

This can be integrated over angle, and after rearranging terms, one gets

I= 4zr -dK It{l- Jo( ICD)} + {I- J0( Id(:)}

0-{l- J id( D+ 7(:))} /2-{l-oJ 0 ( A1 D-d(:)l)} /2]. (3.9.29)

Using Equation (2.3.11) for each of the four terms, one obtains for the structure function

00
D(a)= 2(2.91) k, j dz C,(:)

0

×[( aD)5"3+ d'/3(: -I .CD•+ ,t( Z'3 _'I D D- (z )15]. (3.9.30)

The terms in the absolute value sign are equal to

IaD ± d,(: )15/ I = [(aD)2 ± 2aDd(.:) + d-(Z )]/5 /6 (3.9.31)

This expression can be simplified and numerical difficulties eliminated with the use of

Gegenbauer polynomials. Their generating function is

(I- a2) + = 2" C n(t)an. (3.9.32)
n=0

It can be shown that the Gegenbauer polynomials can be represented as

A(os. n ( + m)r(A + n - m)cos[(n - 2m)(p]
Cn(cos 11)= •_ 2 (3.9.33)

m =0 m!(n - m)![(A.)

A term that is useful is

-5/6 1 cos2
C (Cos ) 1[ 1  Co P (3.9.34)
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For aD > d(:), the terms in the structure function can be expanded in Gegenbauer

polynomials. The zeroth and all odd order terms cancel and if m -+ 2m the result is

(o ) =2(2. 91) k(fd:.. C-(: d5 - (/ C -5/6(Cos O (d )

0 m=I

(3.9.35)

It is this canceling of the first two terms of the power series that causes numerical difficulties if

the integral is evaluated numerically without the above expansion. Define

(.2= 2.91k2 fd )d /3( 2.91(o •.0  0 . 91k3d 5 1 3 ' (3.9.36)
0

For adaptive-optic systems, the Streh! ratio is fairly high, which requires the structure function

to be small. This assumption allows one to retain only the first term of the Gegenbauer

expansion to give
D(a )= 2o2• - 2 x,

S(3.9.37)

where x =2.91k 2 1- 4cos P].1(aD) (3938)

L

and d,= f-d: C2(-)d " (3.9.39)
0

The assumption that aD > d(:) is not true in the center of the aperture, but, is typically true

over most of the aperture. There will be a small error made by integrating this approximate

expression over the entire aperture. In fact, if the exponential is expanded in a power series

only the integral of the first six terms converges because of this assumption. If only the first

six terms are retained, the Strehl ratio can be written as

exp[-- 3]4SR= 2 I Ld2K(a) 14+ Xi +( +--+ + . (3.9.40)

If just the first term in the last bracket is retained, the result is equivalent to the Mar~chal

assumption. The assumption used here is valid to a lower Strehl ratio than that one. The

integrals over angle and the aperture coordinate can be perforned analytically. The angle
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integral, after use of the binomial theorem, is equal to
2m Is n n 2x

S(n)=i- - -L f--cosd2 q, = =,n- 3-m ,d• cos 21" 47, (3.9.4 )
0 Mn=0 0

Equation (3.641-4) in Gradshteyn and Ryzhik is
"x/21 2 m 7r (2m - 1.!!

Jd(O cos2"' (P 2(2m)!! (3.9,42)
0

where (2m- 1)!!=(2m - l)(2m- 3) ... (3)(1), (3.9.43)

and (2 m)!!= (2 m)(2 m - 2) ... (4)(2). (3.9.44)

With these relations, the angle integral is equal to
n( n 3-(2m- I)!!

0(n) = 1- . - .m " (2 m)!! (3.9.45)
M-I

The values of interest are D(0) = 1, (D(1) = 0.8333, b(2) = 0.7083, D(3) = 0.6134, D(4) -

0.5404; and D(5) = 0.4836. The aperture integration is
I

Y( n) = fda at - n1 3K (a). (3'9.46)
0

Using the results in Equation (2.3.15), the values of interest to us are Y(0) = 1, Y(I) = 1.402,

Y(2) = 2.087, Y(3) = 3.396,Y(4) = 6.419, Y(5) = 16.94. If these values are used, the

approximation to the Strehl ratio is

SR - exp[- ]I + 0. 9736 E + 0. 5133E2+ 0. 2009 E3 +0.d697 E44+ 0. 02744 ES],

(3.9.47)
2. 91k ,d/

where E
D / 3 (3.9.48)

This result was compared to that obtained by numerical integration and shown to be in good
agreement as long as the Strehl ratio was above 0.3. This expression will now be applied to

various types of anisoplanatism.
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3.9.3.1 Displacement Anisoplanatism

The terms to use to find the Strehl ratio are

di = p d-, (3.9.49)

5/3

and 2. 9lk ) d5/ 3 = 688( d (3.9.50)

Use was made of the definition of the coherence diameter given in Equation (3.5.5). If these

expressions are inserted into Equation (3.9.40), then one obtains the Strehl ratio versus

displacement plotted for two different scales in Figures 3-26 and 3-27. The Strehl ratio for the

.HV-21 model is not plotted since its Strehl ratio is virtually identical to SLCSAT day values.

APERTURE DIAMETER 0.6 m

0.6 SLCSAT NIGHT

e 0.4

SLCSAT DAY
0.2

0.0 HUFNAGEL-VALLEY 54

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

DISPLACEMENT (m)

Figure 3-26. Strehl ratio versus parallel displacement ffr a 0.6-m diameter system with various turbulence
models.
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0.000 0.005 0.010 0.015 0.020 0.025 0.030

DISPLACEMENT (m)

Figure 3-27. Strehl ratio versus parallel displacement for a 0.6-m diameter system with various turbulence
models for small displacements.

3.9.3.2 Angular Anisoplanatism

If the beam is offset by a constant angle, then

d(:)= 9 :, (3.9.51)

and d2 !L'e, (3.9.52)
251L C(::535/3

and a,=2.91k 5 "e j d:C(: :5n 3 =(e o)
0 (3.9.53)

Use was made of the definition of the isoplanatic patch size given in Equation (3.5.6). The

Strehl ratio at zenith for various turbulence models is plotted in Figure 3-28 and at 30 degrees

from zenith in Figure 3-29.
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Figure 3.28. Strehl ratio for angular anisoplanatic error at :enith for various turbulence models versus
separation angle for a 0.6-m system.
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Figure 3-29. Strehl ratio for angular anisoplanatism at 30 degrees from :enith for a 0.6-m system.
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3.9.3.3 Time Delay

For this case
L 

2do)- j d: C ,,(:v( to2 t,(3.9.54)
0

2 2( V5 / 3(: 1/3 5/3and ")f 2.=91k J d: C (:) ) =(r/ t) , (3.9.55)
0

where the velocity moment is defined as

L
n f d- Cn(- )2- (-) (3.9.56)

0

The characteristic time is defined by

153= 2. 1, (3.9.57)

The Strehl ratio is plotted for various turbulence models at zenith for a Bufton wind model with

a ground wind speed of 5 m/s in Figure 3-30 and at 30 degrees off zenith in Figure 3-31.

c 061 AAGEL-VALLEY 2

0.4
APERTURE DIAMETER 0.6 m

0.2
HUFNAGEL-VALLEY 54

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

DELAY (ms)

Figure 3-30. Strehl ratio versus time delay at :enirh for 0.6-m system.
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Figure 3-31. Strehl ratio versus tite delay at :enith for O.6-m system at 30 degrees :enith angle.

The Bufton wind model gives the wind versus altitude as

V(h)= V~ +310exp [4th - 9400)1. (3.9.58)

3.9.3.4 Chromatic Anisoplanatism

in Section 3.4.3, the basic formulas for chromatic anisortanatism were presented. The

formulas there assumed that the rays were parallel at the target. In actuality, they converge on

the target and it will be shown that the error in assuming parallel beams exoatmospherically

rather than beams that converge on the target is very small. The displacement as a function of

range is given in Equation (3.4.40). At the target at range R. the displacement is d(R), and

to hit the target squarely one must change the launching angle by d(R)IR. Therefore. the

accurate formula for the displacement of a beam that converges on the target is

d(z 'sin()An Jdx a( x) - : Jdx c x)]. (3.9.59)
Cc52 (4) -0o

The difference in refractive index between the two wavelengths can be calculated from
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Equation (3.4.41). The last equation can be written as
Z(: -- sin (4 ,, )An

. Co ~ (4) [ (3.9.60)

The integral of the air density is easily evaluated to give

1(.)=9010{1-expII[-. IIx 10-.]} 4-< 10km

I(:)= 8161- 10190 exp[-1. 57 x 10 -4 : > 10km. (3.9.61)

The moments of this displacement are found to beE si (4•) A,, 1 T
d= sos2l() T1, (3.9.62)

where

L h C 'h sec(h))]
Tn a2. 91 k 0 sec(4) Ldh Cn(h) I( h)s- R 1(R)] . (3.9.63)

0

L is the height of the target. The last term in brackets goes to zero as the range becomes

infinite. in Figure 3-32 is plotted a comparison of the Strehl ratio of L target at 300 km and one

at infinity.

1.0

o.9 - - INFINITE RANGE

m300 k RANGESo.sI:•

0.7

0.0 APERTURE DIAMETER 0.6 m

45 DEGREES ELEVATION

0.3 0.9 1.3 1.8 2.3 2.6 3.3
WAVELENGTH (jro)

FixrMe 3.32. Comparison of the StrZhl ratio at infinite and 300 km ra2fte.
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There is very lintle difference in the two results which justifies the assumption that the rays

can be considered parallel. For infinite range, the above equation reduces to

L
T =2.91k Sec() Jd C2,'( h)I"(h). (3.9.64)

0

The results for the finite range case entails a numerical calculation for each range. The infinite

range results can be calculated once for each turbulence model and used for different z~nith

angles. Table 3-2 contains the values of T- and T•j 3 for various turbulence models.

TABLE 3-2

Values of T . and T 5 3 for

Various Turbulence Models

MODEL T2  T513

SLCDAY 2.706 x 10's 2.004 x 107

SLCNIGHT 2.25b x 10-6 1.512 x 107

HV-21 t6.16 x 10,6 3.596 x 10-7

HV-54 3399 x 10- 1.867 x 106
HV-72 5.949 x 10's 3.247 x I

Figure 3-33 contains plots of Strehl ratio for the SLCSAT day model for various elevation

angles when one beam is at 0.5-micronmeters wavelength.
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Figore 3-33. Strehl ratioJ ir SLCSAT d.y turhklene with the scrwing he" at 0- pm fiw a O.6-m system.

3.9.4 Strehl Ratio in an Adaptive-Optics System

The filter function with all the defects included can be written down. The beam from the

adaptive-optics system has anisoplanatic errors, errors due to fitting error, and errors due the

finite system bandwidth. The composite filter function is the product of the filter function for

fitting error. FFE. times the filter function for finite servo response, F$, and the phase shift

due to the anisoplanatic displacement minus unity. This filter function is

FAO =IFFE( ic) Fs( e, )exp[ ii, #'(: )I- 1I. (3.9.65)

3.10 BEAM PROFILE

In this section, the beam profile for uncorrected turbulence and for an adaptive-optics

system with anisoplanatism will be found. The method of solution uses the same tools that

were used before, but, because these problems are more difficult than the calculation of the

Strehl ratio, the expressions are longer. The solutions manipulate asymptotic series that have

been found. This manipulation is possible because of the properties of asymptotic series of the

Poincaird type that were stated at the end of Section 2.4.2.
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II
3.10.1 Beam Profile for Uncorrected Turbulence

A framework for finding the beam profile for any ratio of the coherence diameter to the

aperture diameter is developed. This approach expresses the beam profile as the sum of an

infinite series of radial functions. A different series of functions is obtained for large coherence

diameters and small coherence diameters. For weak turbulence, it is shown that the first term

of the series gives the Airy function profile. Typically, one is interested in the case in which

the coherence diameter is small compared to the aperture diameter. In that case, only the first

term of the asymptotic series profiles is necessary to find the profile. The profile is expressed

as an integral and the ,:echniques that have been developed are used to find the profile for small

and large diameters. It is shown that these two series match well at intermediate diameters and

therefore give a profile that is valid for all diameters. It is interesting to note that the behavior at

large radii is obtained by taking an asymptotic series of an expression obtained from an

asymptotic series.

The starting point for obtaining the beam profile is the expression in Equation (3.2.12) with

the structure function for uncorrected turbulence given in Equation (3.9.15). This gives the

expression
In r k ()rO t1 

1 ]Q fr)=a daJ,)( K (r a )[(aD) 5344 / 3 ]; (3.10.1)
0

This integral will be evaluated by Mellin transform techniques. Let

-k1 kD. (3.10.2)

Separate the integrand into the two functions

H(x / a)= J,,(a /.x), (3.10.3)
r" 

) 5 / 3 ]
and- 344 U ( - a). (3.10.4)

With these definitions the beam profile is

In(r) =fJ do Hn( x / a) H2(a) f ds nH> )H( s)xs. (3.10.5)
0
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The Mellin transform of the first term is found from Equation (F.5) as

H*(s)=2-S-IF-S /21
LI + s /2" (3.10.6)

The Mellin transform of the second function can be found from the expression for the Strehl

ratio that was previously found. Examining Equation (3.9.6), it is easy to see that the

equivalent of Equation (3.9.13) is
i • r o , + 3 .4 ( L ) 5 / 3 1 1 +tv3 + s K a

H*(s) = lim--- 4 r(f V) -TfT4-v5 ) r daao+Sv/ 3 +s

(3.10.7)

Following the same steps as the previous analysis, one finds

S24 s /d v, + s - 5v /6,-v + 3s / 5 +5/3
) 24 [ 5

H ( s) f- r~' +r ][3.44(-L4~ ~ )j2 5V'--r 2&3+ s/2-5v /6,-v +3s 15+1 5 L r'o,/.

(3.10.8)

Since A = 5/6, the path of integration can be closed in the left-half plane and the integral is

equal to the residues at v = -n for n =- 0, 1, 2, Therefore, the Mellin transform of this

function is

H ( 4) (-1) r s/2+5n/6+3/2, s/2+5n/6+ 1. , 5/3 1

- / n=0 FL s/2+5n/6+3, s/2+5n/6+2 0

(3.10.9)

The above series converges rapidly for large coherence diameters. If the turbulence is severe,

then an asymptotic series is wanted. It is easily shown that the steepest descent contribution

has exponential decay and is insignificant compared to the residue of the poles to the right of

the path of integration. There are poles at v = 6n/5 + 3s15 + 9/5 for v = 0, 1, 2. . ., and a

single pole at v = 3s/5 + 6/5. There is only a single pole because the singularities in the

denominator cancel the other terms. Evaluating the residues at these poles gives for the

asymptotic solution
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H5(s) = 5)3.44(/)

00 H) n (3.44)- 9/5- 3s /5 -6 i/5 ?*3+ s+2.n +3

n= r. 5

(3.10,10)

There was an extra factor of 5/6 multiplying the last summation because the coefficient of v

was 5/6.

To obtain the beam profile for large and small values of coherence diameter, these

expressions must be inserted into Equation (3.10.5) and that integral evaluated by the

techniques we have been using. That will not be done here but rather the beam profile will be

examined in two limits. First, let us look at the profile when the turbulence is low. Only the

first term of the series will be examined. To find this, insert the first term of Equation (3.10.9)

and the expression in Equation (3.10.6) into Equation (3.10.5). The result is

r.F 2,1-i /2_
I (r)=-- ds 2 - , /2  2 s. (3.10.11)

From Equations (F.6) and( 1.4), one recognizes this integral as the Airy function given by

/fl(")=[{k°D] ." (3.10.12)

Higher order terms will modify this distribution by subtracting from it. The fact that this term

exists even as the turbulence gets stronger shows tha: the beamwidth does not increase

significantly as the turbuleilce gets worse as long as it is not so strong that the asymptotic series

is required. The characteristic of the solution is to have a strong central peak with a broader

tail. This distribution is referred tW as the fried-egg effect. For strong turbulence, the first term

of the asymptotic approximation in Equation (3. 10.10) is a good approximation and if that is

inserted along with Equation (3.10.6) into Equation (3.10.5) one obtains
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1,(12 1) f- rds 3 S, (3.10.13)
5(3.44)1.2 D- 2 I s/2

kor ro
where x =0. 238 z (3.10.14)

Since A f 2/5, the path of integration can be closed in the left-half plane with the result
2) 0* n

(^ r,,) -, (-1) r6n 6"1 ,.
IP()= 1. 09  . + tj,,'2. (3.10.15)

For large distances from the origin, an asymptotic series is wanted. It can be shown that the

steepest descent contribution has exponential decay; therefore, the asymptotic series is the

residue at the poles to the right of the path of integration. These poles are at s = 5n/3 + 2,

n = 1. 2, 3 ... The n = 0 term cancels because of the pole in the denominator at that value

and the beam profile is

2 Y (-l )J5n/ + 114.19z1,,( ir) = 16 (Dkor) n-" _- L-n / 6 ](ko r ro .(3.10.16)

The beam shape is plotted in Figure 3-34. In the same figure is also plotted the beam shape

for a wave with no turbulence but which has an aperture diameter equal to the coherence

diameter. Notice that the shapes of the two profiles are close to each other when the intensity is

above 0.2 of the value on axis.
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Figure 3-34. Beam shape with and without turbulence.

3.10.2 Beam Shape with Anisoplanatism

Next, the more complicated problems of finding the beam shape with anisoplanatism will

be solved. The method of solution will use the method of expanding the exponential into a

series of Gegenbauer polynomials as was done in the calculation of the Strehl ratio. For this

reason, the beam profile will only be valid when the Strehl ratio is greater than 0.3, which is

the region of most interest. The starting point will be the expression for the beam profile given

in Equation (3.2.9), which is repeated here

n(2) x • d'K((z)exp [ ikDr-. e/ :- D(f)/2]. (3.2.9)

The structure function is the same as when the Strehl ratio was calculatcd. It is again expanded

into Gegenbauer polynomials and only the first term is retained. If the exponential is expanded

into a power series as was done before, the equivalent expression given in Equation (9.3.14) is

exd[a exp [i3 iz -- I
ex[-)• •dilexp ikoDr'. i2/ z ] K(a) I~ + - +-.• X-•- +-I 1,(r) -= 2w1 ALX

2 Y2 2 24 120J

(3.10.17)
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The integration over angle is not as straightforward as before since there is an additional term in

the exponential. At this point an approximatior is made. The angle dependence in the x ter,n

is small and we will replace the angular expression in .r by the values that were calculated for

the Strehl ratio. The angular integration can then be performed to get a Bessel function for the

exponential term. Define
1~ f" da • + IK (a dja/ )f-!a + 2K ()J

I() (v) 0 a
0 0

(3.10.18)

where Y krD' (3.10.19)

and 1(v) is chosen to normalize the function on axis. It is easy to see that 1(v) is the

function that we have evaluated in Equation (2.3.15). With these definitions, the beam profile

can be written as

1,( r) exp o"][Q (0) + 0.9736 EQ + 0.5133E2Q(-3)

+ 0. 2009 E 3 Q- + 0.0697 E 4 Q (-!") 0274E (_ISQ(- (3.10.20)

To complete the analysis, the function Q(v) must be evaluated. The same method as that used

in the last section will be used again. Define the first function the same as in Equation (3.10.3)

and the second function as

It is easy to see that

H:(. s) = I( s + v). (3.10.22)

The function we are seeking is then equal to

Q(v) (0 + v /2[3 /2 .3 fdsrs,+v2 s,I + v/2 s ]({•)r Ll -- s, 3 +vl12 -s,2+ 2-.

-3 (3.10.23)
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For v = 0, it can be shown that the integral is equal to an Airy function. For other values of

v, the solution cannot be expressed in terms of simple functions. Therefore, the integral will

be evaluated in terms of an infinite series. Since A = 2. the path of integration can be closed to

the left, and one obtains for the residues at S = -n, n 1 1, 2, 3, ... the value

S3 + /2j . 2 r[ n.+ 3-1 + v11 2 :
n 0on! ( n+ I + v / 2 n3

(3.10.24)

For large radii, an asymptotic series is wanted. This series has contributions due to both the

steepest descent contribution and the poles to the right of the path of integration at s = I + v/2

and v/2 + 3/2 + n for n = 0, 1, 2 ..... This asymptotic solution is equal to

,. 3+'/2 0 _)+1 n+!+v/2 2 n 3

2 n!(n+ 1/2) 32- kof)

=1 /2+1 2z 2+v 2 32•112 i.-3y-r-v -

(3.10.25)

The beam pattern can be plotted for various types of anisoplanatism by putting in the

appropriate values of E and o in the above expressions. The beam pattern is plotted for

angular anisoplanatism in Figures 3-35 and 3-36 for various values of offset angles. Notice

how the dips in the Airy pattern fill in. and the power gets distributed at larger radial distances.
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Figure 3 -35. Beam shape with anisoplanatism for a 0.6-rn aperture at :enith for the SLCSAT day model.
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APPENDIX A
VALUE OF THE INTEGRAL WITH MULTIPLE POLES

It will be shown in this section that the occurrence of multiple poles, while it requires

special treatment, does not pose any conceptual difficulties in calculating power or asymptotic

series. Multiple poles can be viewed as the limit as two or more poles coalesce. To evaluate

the integral in terms of a power series, the residue at the U/s term must be determined. To find

the asymptotic; series, the residues must be found and the steepest descent contribution must be

evaluated. The residues are-found by expanding all the functions in the integrand into a

Laurent series about the point of the multiple pole. multiplying all the series together, and

determining the coefficient of the i/s term. This technique is illustrated with examples of

double and triple poles. and then with a physical example encountered in calculating the speckle

from a rotating diffuse plate. I have not encountered any problems in turbulence wave

propagation that have multiple poles in the complex plane.

A.1 Expansion Of Integrand Functions

As a start in this process, the Taylor series expansion of --S about the point s - k is easily

found to be equal to

.- s-ls=k +e n-O:(A.1.1)

The Gamma function r(s + N) has poles at s = -N - k, and the expansion of this close to

a pole can be shown to be equal to

r+NI-(-I ) k all(N -k) irs + N + e =0 ." (A. 1.2)
it = 0)

The expansion of the Gamma function with -s as the argument about a pole is

r(-I)k , an(-N + k)( (A.1.3)k! L ( ).(AI3r - + N )Is w.-N + k + e k! n- 0
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The firt few coefficients of these expansions can be found in Marichev as

a(s ) a L (A. 1.4)
at~ w.- WO( - S). (A.I.-5)

A.(s) aW *(I) +V 2(l - s)- W'(1 - s))/2, (A. 1.6)

where the logarithmic derivative of the Gamma function is defined as

dIn[r(:)] r'(:)
(d: " :) - (A. 1.7)

The value of this function is given in Jahnke and Emdle (page 18), as

dln~r(:_)] 1 +'(: ) M-,-d " - [I + - :+ -(A. 1.8)

where C is Euler's constant that is equal to 0.5772. The derivative of the last expression can

be taken to obtain

2 (A. 1.9)

This can be summed numerically to find the following values, which are all we will need to

-valuate the integrals encountered in this appendix: TP(I) a -C = -0.5772: P(O.5) - -1.9635:

TP(0.5) = 0.7034: IF '() 1.645; and IV '(0.5) = 4.935.

In addition, one requires the expansion of the Gamma function at a point that is not close to

a pole. If s is positive in the argument, the expansion is

r(s+ M)I = "(M - N - k)l1 + ef(M - N - k)

+e[W( M_- N -k) + W'(M- N - k)] /2 +... (A.1.10)

If s is negative in the argument, the expansion is

F(-s - M A =r(-M +N +k)11- eW'(-M + N +k)

+ e2[ /r(-M +N +k)+ W(-M +N +k)]/2+... + (A.1.I1)

The above expansions will be used to evaluate integrals with multiple poles.
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The integrals considered in the following examples are of the form

I= -"F(sds. (A.1.12)

where the path of integration goes from -ie to +ic., and the path crosses the real axis with a

very small negative real pat.

A.2 Example No. I

Consider the following integrand with a double pole

I r(s)r(s)
s 2 - (s +I)r(s+I) (A.2.T)

The path of integration and pole location are shown in Figure A- I. It is obvious that them is no

term that varies as I Is: therefore, the integral is zero. If the Gamma functions in the numerator

are expanded using Equation (A. i.2), the terms with I/c cancel. The integral is again zero.

PATH OF
INTEGRATION J-PLANM

X

0

FiyVure A-I. The patth of integration and pole /ocation for EIvample No. I.

A.3 Example No. 2

Consider the slightly more complicated integrand
.- F(s )r(s ):-s

F(s)=
"S2 F(s + [)r(s + I) 5(A.,,)

The path of integration and pole location are the same as in Figure A-I. The value of A -0.
and the direction of path closure depends on the magnitude of :. For : < 0 the path of

integration can be closed in the left-half plane, and the value of the integral is zero. For

-> I the path of integration can be closed in the right-half plane. If the expansions in

Equations (A. 1. 1) and (A. 1.2) are used, the I/e term comes from the second term of the first

equation and the second terms of the second equation. One obtains for the value of the integral
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I = In(: )U (: - 1). (A.3.2)

A.4 Example No. 3

Consider the integrand
Fs- F(s_._)._s= r(s)r(s)z-s

S - F(s + ) (A.4.1)

The path of integration and pole location are shown in Figure A-2. The poles go off to the left

to infinity just as they do in the succeeding examples. For this example, A = 1, and the path of

integration can be closed to the left for all :. All the enclosed poles are simple since the only

double pole at: = 0 is on the right side of the path of integration. The integral is equal to

n=i (A.4.2)

0 IM PATH OF
PA§h sPLANE
INTEGRATION

x
X X X X X X" X

4 -5 -4 -3 -2 -1 0

Figure A-2. The path of integration and pole location for Example No. 3.

For large z, an asymptotic series can be found. Since B = 0 the steepest descent

contribution has exponential decay as given in Equation (2.4.36) and can be neglected. Using

Equations (A. 1.1) rnd (A. 1.2) for the numerator and Equation (A. 1. 10) for the denominator,

the asymptotic series wt ich only has 3 terms in this case is

I = exp (-z ) + In (: ) + 0.5"i72. (A.4.3)

The first 20 terms of the power series and the asymptotic series are plotted irt Figure A-3,

and the difference between the two values is plotted in Figure A-4. Notice •he agreement of

w the two series over a large argument range. Both are accurate in this region of agreement.
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Figure A-3. Plot of the power and asymptotic series fior Example No. 3.
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Figure A-4. Difference between the asymptotic and power series for Example No. 3.
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A.5 Example No. 4

Consider the integrand
F (s) =- r(s, -s )z-s. (A.5. 1)

The path of integration and pole location are shown in Figure A-5. Since A = A' = 0, the path

of integration can be closed in the left-half plane when Z < 1, and in the right-half plane when

: > 1. There is a double pole to the right at : = 0 that can be evaluated using Equations

(A. 1.1), (A. 1.2), and (A. 1.3), and the solutions are

n Z < I (A.5.2)
n=-I

and

I - ) n: z>1I= In(-) n >1. (A.5.3)

PATH OF s-PLANE
INTEGRATION

X X X X K X X

X X X X X I X

-6 -5 -4 -3 -2 41 0 1 2 3 4 5 6

Fiure A-S. The path of integration and pole location jor Example No. 4.

A.6 Example No. 5

Consider the integrand

F(s)= r(s,-s - N ):-s. (A.6.1)

The path of integration and pole location are shown in Figure A-6. The value of A = A' = 0,

and the direction of path closure depends on the magnitude of z. There is one double pole to

the right of the path of integration, and N double poles to the left. The value of the integral is
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=-N 1 In(:)+ 'P(I+N -n)- IJ(1+n)
n!(N + n)!n-- I

+( :N +1 00 n! (-: )n (A.6.2)
+__ '(N + n<+l,

and
;; I =(-1)N WO() - W(I + N) -In(:) ()N +1•0 h0 -)

N! + I (N + n+ 1)! >1.

(A.6.3)

PATH OF
INTEGRATION s.PLANE

X X X X X X X

-6 4 -4 -3 -2 -1 01 1 2 3 4 5 6

X X X X X I X X X X X X

Figure A-6. The path of integration and pole location for Exoomple No. 5 when N = 4.

A.7 Example No. 6

Consider the following integrand that has tripl, poles
F (s) F(s, s, -N - s)'.-S. (A.7. 1)

The path of integration and pole location are shown in Figure A-7. For this case A = 1, and

there is one triple pole to the right of the path of integration, and N triple poles and an infinity

of double poles to the left. Three terms in the expansion of each of the functions must be

retained to get the complete residue at each of the triple poles.

Since A = 1, the path of integration can be closed in the left-half plane. The residue at a
double pole is

Residue = r(k- N)[21'l + k) - I(k - N) -in(:)] (.

(k!)
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PATH F
IN'EGRATION A.PLE

X X X X X X X

,6 4-3 -2 1 02 3 4 5 6
X X X X X X X

X X X X X X X X X X X

Figure A-7. The path of integration and pole location for Example No. 6.

The residue at a triple pole is

Residue [I i2(=:)Resdue-2 + In( WOP( + N - k) - 2 W(O + k)}I + 2 Y2(l + k) + 3 F'(l)

'•'(l+ N- k)- P"(1+ N- k)
+ 2 (- ) N -k -I- k.

F (l + k)- 2 F(l + N - 'k) '(l+ k) .([)N k )k)2(
k) N (N

(A.7.3)

The power series will not be written down explicitly since it is lengthy, and it can easily be

evaluated from the residues given above. For large values of z an asymptotic series is wanted.

Since condition I in Equation (2.4.48) applies, the asymptotic series is equal to the residue of

the poles to the right of the path of integration. This contains one triple pole and the single

poles. The asymptotic series is equal to

""N +n+ I - N "In 2(z )

(-N n) " +N +Nn(:){I'(1)+ 4'(N + I)}

5kP(I) tf(l) 1
2 2 Y"(I + N) + W+'(I+N)-2P(l)I(l+ N)

(A.7.4)
A.8 Speckle Frorv a Rotating Diffuse Plate

The variance in the intensity will be derived for a rotating square plate with side L that is a

diffuse reflector. A diffuse reflector has the property that the reflected field is completely
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uncorrelated from point to point. This property produces the phenomenum of speckle in which

there is a variation in intensity from point to point in the received energy from the plate. The

intensity variance can be reduced by averaging speckle patterns, and the type of averaging that

is considered is produced by a rotation of the diffuse plate. This causes different speckle

patterns to sweep across the receiver. If the receiver is incoherent, that is, it averages the

instantaneous intensity and not the field, there will be a reduction in the speckle amplitude.

That will be calculated here. The reason for considering this problem is that the final result is

an integral that can be approximated using the Mellin transforms methods, and the resulting

integral in the complex plane has a double pole. The return from a uniformly illuminated

diffuse plate can be approximated using the paraxial assumption in Equation (2.2.1). Assume

that the plate is rotating about the y axis with rotation rate wo as is shown in Figure A-8.

ROTATION AXIS

L

L

Figure A-f Geomet'y of the rotating diffuse plate.

Expressing the return in cartesian coordinates, one obtains for the field as a function of time

L/2 L/2
E(t)= fdx fdy exp{i[k4 (R+r 2(x,y)/2R+2xo~t)+ (x,y)]., (A.8.1)

-L /2 -L/2

where r(x, y) is the transverse position of a point in the plate, and 0( c, y) is the arbitrary

phase produced in reflecting from the plate. The factor of 2 arises because the change in round
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trip distance is twice the distance moved by a point in the plate. The average normalized

intensity is found by multiplying this return by its complex conjugate, averaging over a time

T, and dividing by both the plate area and the averaging time, to give

T LI2 L/2 LI2 LI2

(I)= 2___ dt f dxl f dyl f dx2  f dY2 exp{2iko[x 1 -x 2]O)t}
TLU -LL2 -LI2 -L12 -L /2

Kexp { i[ k([ r2 ( x1, y)- I2 (x2, T2] / 2)R) + *(xiV, y,)- 0(x 2, y2)]}). (A.8.2)

Because the phase is uncorrelated from point to point there will only be contributions whenever

x. =x 2 , and Y I = Y2. For that case, the argument of the exponent is zero, and the average

intensity is equal to 1. This produces the physically reasonable result that the average intensity

is not affected by speckle. The variance of the intensity will be found from the relation

I _=( 1' )) 2)= 1,, _ (1)2.
(A.8.3)

Introduce the notation that bn is it point corresponding to xn and y n" '11t; average of the

intensity squared is equal to

(12) f T T

JbfAfdb,JfdAf db fdtjd,7
0 0

exp { ik [;(b 1 ) - r2 (b2) -r2b 3 )+ r2 (h 4']!2 R}
T 2 TL 4 3

x exp { ik,( ., .,) ,, - ( 0( - X4) '2] + [((l) - 0( b2) - 0( b3) + 0( b4)]}.

(A.8.4)

Once again, because the phase is uncorrelated the integrals over 53 and h4 only contribute

when the phase terms vanish. This occurs for the two separate cases of

bI = b2 and b3 = b4, (A.8.5)

or b1 = b and b2 = b4. (A.8.6)

The first condition produces unity for the value of the integral, and this cancels the seccnd term

of Equation (A.8.3). With the second set of conditions inserted, the integrations over the two
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y coordinates can be performed and the result is that the variance of the intensity is
T T

a, =-r--- j, j2, f d .I'd, ep { i2•*,0 1 X I- x2] [,' - ,j}. (A.8.7)
T Lo o

Each of the integrations over time are the same, and can be performed to give
sin 2( Cto[-X ' ,--.,2]T)

4 2. 2.,f&,f dr si2 ( [ x 2]) (A.8.8)

TL (2wko[x 1 - XjT)

Make the changes of variables

= - OkoL(. I - X.,) = a( x• - X2), (A.8.9)

wok 0TL a
and "- 2 (xV + 2) = (X 1 + X2)' (A.8.10)

where a= OwkoTL (A.8.11)

The area'of integration has been transforned from the the same one as in Figure 3-3 to the one

in Figure 3-4. The resulting expression is
a 2in - a)/2

oir = f " dz sin'-- Jd+• (A.8.12)a- 0 :" -:-a)/ 2

The last integration can be performed to give
aaidsi2= (a-'
f = sio .2 (A.8.13)

00S~This ir,," ::grad can be evaluated by considering the following integral

r(r) f -- U _ - ) :-" sin 2: ). (A.8.14)
. 0

The o. _nal integral can be expressed in terms of this new integral as
S2/(1) 1(0).

a (A.8.15)

Using ti onvolution integral, Equation (A.8.14) can be written s

(r) -- C 1 - 2 d-2] ds. (A.8.16)
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Expressing the integral of interest in terms of this integral gives

-n-I fds rI] (A. 8. 17)-~ ~ 2-- ÷
The pole location and path of integration are shown in Figure A-9. Notice the double pole at s

= 0. Since A = 2, the path of integration can be closed in the left-half plane to give for the

value of the integral

PATH OC
NTEGRATION 04Ax

X X X X X, X X

4 ". 4, , 2 -I 0
_1/2

Figure A-9. Path of integration and pole location for the integral in Example 7.

{- n! ']r '+-]

The leading terms of this series are
=I- 0.,0556 a2+0.00296 a4 0.000113 a 6 + 0.00000314 a+.... (A.8.19)

Ir

We are interested in the case in which there is great deal of speckle averaging, a condition that

requires large values of a. The asymptutic series is composed of the residue of the poles to the

right of the path of integration and the steepest descent contribution. The asymptotic series is
- - In(a) 2.27 cos(2 a)

-a -" a - a2  4a 4  (A.8.20)

The first term comes from the residue at s = -1/2, the next 2 come from the residue at s = 0.

This residue is

Residue (0) = [-3W(l1)+2k(0.5)- 'P(1.5)]. (A.8.21)SResidu (0) -4 r(3 / 2) a
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The power series and the asymptotic series are both plotted in Figure A. 10. The difference

between the series is plotted in Figure A. 1I. There is good agreement of the values of the two

series over a range of parameter.

1.04

0.9

0.8

-- Series
0.? -Asymptotic

0.6

0.5

0.4

0.3

0 1 2 3 4 5 6 7 a 9 10
ARGUMENT

Fiaure A-IO. Power and asymptotic series for the speckle problem.

Uit

1 aIa
1(0.t...... ........... ,~* .... -.. , . . •1. , i " "

2 3 4 5 6 7 a 9 10

ARGUMENT

Figure A-I I. Difference between the power and asymptotic series for the speckle problem.
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As a concrete application of these results consider the speckle from a proposed target

satellite. This satellite has a retroreflector that is composed of an array of corner cubes that will

be approximated here as a square diffuse plate. The array is earth stabilized and the change of

the line of sight as the array moves in its circular orbit at 500 km produces an apparent rotation

about the line of sight. The geometry of the satellite pass can be approximated by a flat earth

geometry as shown in Figure A- 12.

- V' d " 8 -
REFLECTOR

R

VGROUND SITE

FiRure A-12. Geometry of a satellite pass with a diffuse reflector,

From this figuie one obtains

tan(4) = d / H. (A.8.22)

From this, one can obtain the apparent rotation rate as

d)4, d4 v cos 2(4 )

dt =- _6-d H (A.8.23)

The reduction of the intensity variance versus normalized averaging time is plotted in

Figure A-13. For this satellite, there will be a reduction of the variance by a factor of 16 if the

averaging time is 0.4 ms. Remember that the standard deviation decreases as the square root of

the plotted decrease.
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FiRure A-13. Speckle reduction for an earth stabili:ed satellite.
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APPENDIX B
ERROR PRODUCED BY

AXIAL APPROXIMATION ON TRACKED TILT

The approximation in which z' z" is replaced by zz is examined for the case of tracked tilt

that is analyzed in Section 3.5.6. Similar arguments for other cases show that this is a very

good approximation. The exact relation that should be used after the change in variables given

in Equation (3.3.34) and (3.3.35) is
2, :2 - .2_ 2/4.(,.I

The first term gives the result that is calculated with the approximation, and the second term

produces an error term. The same approximation previously made, that the integration over the

difference coordinate can be extended to infinity, is also made here. Performing the integration

over :, the error term is equal to

E 1.(1J2 Jo AD /2Eni(|. 21. (B.I.2)

Equation (3.3.28) can be used to evaluate the integral over the difference coordinates as

I = fd:_ En(W.I :_I):= -:2 Jd:- En(W.I :_J)cos( .:.) . (B.l.3)
o ar.- o 0

W-=0

Assuming the turbulence is isotropic and inner and outer scale effects are negligible, then

03.1 O03801 3  (B. 1.4)

Using this result, the error term is

66 / 3 5/3
7.66D PO1 0. 239 ptD

L 2  o L2
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The ratio ot this error term to the approximate answer is
0. 0393 Me,D 2

Ratio - (B. 1.6)

Since the second moment is over six orders of magnitude larger than the zeroth as seen in

Table 3-I, this ratio is very small, and the error made in neglecting the correction term is

insignificant.

I
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APPENDIX C
ANALYTIC EXPRESSION FOR THE

HUFNAGEL-VALLEY TURBULENCE MOMENTS

The turbulence strength versus height for the Hufnagel-Valley model is

C( h) - 0.00594 W Io- h)! exp( h
n - 10 0-

+ 2. 7x 10-16 exp ( 1 5-00)+ A exp (:- It (C..,1)

where W is the pseudo-wind and A is a parameter that is usually set equal to 1.7 x 1014. The

* " strength of the turbulence is usually changed by varying the W term. For instance, the HV-2 i

model has the above value for A, and W is equal to 21. This model is sometimes referred to

as the HV 5n model since the coherence diameter is about 5 cm and the isoplanatic angle is

7 ptxad for a wavelength of 0.5 micrometers.

The full moments are equal to
Go 00

An= cn(i:)z dz-- secn+ f(•) fC( h) h dh, (C.1.2)
0 0

where • is the zenith angle. One finds that the full moments are equal to
00 2

u &dC,(2 :s n+1(; 5.94x 10-20+3 - n- + it)JZn -: ")n 27cF~~l

0
+ 4.05 x 10- 13r( n + 1) (1500 )n + A x 100"+1+ r( n + 1) ].(C. 1.3)

By choosing the proper values of the parameters the same values of the coherence diameter

and the isoplanatic angle can be obtaired as those from the SLCSAT models. In the Hufnagel-

Valley model, a value of A = 1.77E-14 (2.5E-15) and a pseudo wind speed of 11.7 (10.5)

"gives a coherence diameter of 4.98 (10) cm and an anisoplanatic angle of 11.8 (12.9) grad,

which are the same as the SLCSAT-day (night) models. The Hufnagel-Valley models with
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these parameters are called the pseudo SLCSAT-day (night) models. Other definitions could

have been used to define the pseudo SLCSAT and night models. Because of the importance of

the zeroth, 5/3 and second moments, this definition was chosen because it will give answers

that are very close to those derived for the original models.

Define the partial moments in the following way for a distance L, which is at a height H

where

L = sec (4)H as (C. 1.4)

00 G

C2(n( )n Cz=sc11114 C2 h) hn h".15

L H

L H
and u-(L)= JC(z)z n dz =sec: n (+ ) J.. C2(h) hndh. (C.!.6)

0 0

The definitions of the incomplete Gamma functions are
x

y(b + 1, x)= fybexp(.-.y)dy (C.1.7)
0

and r(b + x) = fyb exp( - y)dy (C.l.8)
x

Using those definitions, one can find the partial moments of the turbulence to be equal to

yj(L)= Jd:Cn(:): =sec n+I( 5. 94 x 10 % )+3( r)-(n + HL
L

+4.05 x 10-13Frn + L - 1500 ) n + Ax loo10n (n+ I( -+)]. (C.1.9)

and
L -

Wr(L)= dzC (z)z =sec " x 10
0

+4.05×x 10- 3 (n+1,1,)(1500)+ Ax 100n+ly(n+ 1,l ). (C.I.10)
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